Cover
Vol. 16 No. Special Issue (2020)

Published: June 30, 2020

Pages: 25-29

Conference Article

The Design and Implementation of a Single-Actuator Soft Robot Arm for Lower Back Pain Reduction

Abstract

This paper presents a simple and fast design and implementation for a soft robot arm. The proposed continuum arm has been built by a single self-bending contraction actuator (SBCA) with two-fingers soft gripper. Because of the valuable advantages of the pneumatic artificial muscle (PAM), this continuum arm provides a high degree of safety to individuals. The proposed soft robot arm has a bending behaviour of more 180° at 3.5 kg, while, its weight is 0.7 kg. Moreover, it is designed to assist the people by reducing the number of backbends and that leads to a decrease in the possibility of lower back pain.

References

  1. D. Hoy et al., “The global burden of low back pain: Estimates from the Global Burden of Disease 2010 study,” Ann. Rheum. Dis., 2014, doi: 10.1136/annrheumdis-2013-204428.
  2. R. A. Deyo, S. K. Mirza, J. A. Turner, and B. I. Martin, “Overtreating Chronic Back Pain: Time to Back Off?,” J. Am. Board Fam. Med., vol. 22, no. 1, pp. 62–68, Jan. 2009, doi: 10.3122/jabfm.2009.01.080102.
  3. A. Al-Ibadi, S. Nefti-Meziani, and S. Davis, “The Design, Kinematics and Torque Analysis of the Self-Bending Soft Contraction Actuator,” Actuators, vol. 9, no. 2, p. 33, Apr. 2020, doi: 10.3390/act9020033.
  4. K. Asaka and H. Okuzaki, Soft Actuators. Tokyo: Springer Japan, 2014.
  5. H. D. Yang, B. T. Greczek, and A. T. Asbeck, “Modeling and analysis of a high-displacement pneumatic artificial muscle with integrated sensing,” Front. Robot. AI, 2019, doi: 10.3389/frobt.2018.00136.
  6. A. Al-Ibadi, S. Nefti-Meziani, and S. Davis, “Design, Kinematics and Controlling a Novel Soft Robot Arm with Parallel Motion,” Robotics, vol. 7, no. 2, p. 19, May 2018, doi: 10.3390/robotics7020019.
  7. M. R. M. Razif, A. A. M. Faudzi, M. Bavandi, I. N. A. M. Nordin, E. Natarajan, and O. Yaakob, “Two chambers soft actuator realizing robotic gymnotiform swimmers fin,” in 2014 IEEE International Conference on Robotics and Biomimetics (ROBIO 2014), 2014, pp. 15–20, doi: 10.1109/ROBIO.2014.7090300.
  8. F. Ilievski, A. D. Mazzeo, R. F. Shepherd, X. Chen, and G. M. Whitesides, “Soft robotics for chemists,” Angew. Chemie - Int. Ed., 2011, doi: 10.1002/anie.201006464.
  9. R. Deimel and O. Brock, “A compliant hand based on a novel pneumatic actuator,” in 2013 IEEE International Conference on Robotics and Automation, 2013, pp. 2047–2053, doi: 10.1109/ICRA.2013.6630851.
  10. G. Miron, B. Bédard, and J.-S. Plante, “Sleeved Bending Actuators for Soft Grippers: A Durable Solution for High Force-to-Weight Applications,” Actuators, vol. 7, no. 3, p. 40, Jul. 2018, doi: 10.3390/act7030040.
  11. B. Tondu and P. Lopez, “Modeling and control of McKibben artificial muscle robot actuators,” IEEE Control Syst., vol. 20, no. 2, pp. 15–38, Apr. 2000, doi: 10.1109/37.833638.
  12. A. A. M. Faudzi, M. R. M. Razif, I. N. A. M. Nordin, K. Suzumori, S. Wakimoto, and D. Hirooka, “Development of bending soft actuator with different braided angles,” in IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM, 2012, doi: 10.1109/AIM.2012.6266037.
  13. A. Jiang, S. Adejokun, A. Faragasso, K. Althoefer, T. Nanayakkara, and P. Dasgupta, “The granular jamming integrated actuator,” in 2014 International Conference on Advanced Robotics and Intelligent Systems (ARIS), 2014, pp. 12–17, doi: 10.1109/ARIS.2014.6871512.
  14. T. Wang, J. Zhang, Y. Li, J. Hong, and M. Y. Wang, “Electrostatic Layer Jamming Variable Stiffness for Soft Robotics,” IEEE/ASME Trans. Mechatronics, vol. 24, no. 2, pp. 424–433, Apr. 2019, doi: 10.1109/TMECH.2019.2893480.
  15. M. Manti, T. Hassan, G. Passetti, N. D’Elia, C. Laschi, and M. Cianchetti, “A Bioinspired Soft Robotic Gripper for Adaptable and Effective Grasping,” Soft Robot., vol. 2, no. 3, pp. 107–116, Sep. 2015, doi: 10.1089/soro.2015.0009.
  16. G. Andrikopoulos, G. Nikolakopoulos, and S. Manesis, “A Survey on applications of Pneumatic Artificial Muscles,” in 2011 19th Mediterranean Conference on Control and Automation, MED 2011, 2011, doi: 10.1109/MED.2011.5982983.
  17. A. Zolfagharian, A. Z. Kouzani, S. Y. Khoo, A. A. A. Moghadam, I. Gibson, and A. Kaynak, “Evolution of 3D printed soft actuators,” Sensors Actuators A Phys., vol. 250, pp. 258–272, Oct. 2016, doi: 10.1016/j.sna.2016.09.028.
  18. J. Z. Gul et al., “3D printing for soft robotics – a review,” Sci. Technol. Adv. Mater., vol. 19, no. 1, pp. 243–262, Dec. 2018, doi: 10.1080/14686996.2018.1431862.
  19. H. K. Yap, H. Y. Ng, and C. H. Yeow, “High-Force Soft Printable Pneumatics for Soft Robotic Applications,” Soft Robot., 2016, doi: 10.1089/soro.2016.0030.
  20. A. Zolfagharian, A. Kaynak, and A. Kouzani, “Closed-loop 4D-printed soft robots,” Mater. Des., vol. 188, p. 108411, Mar. 2020, doi: 10.1016/j.matdes.2019.108411.
  21. A. Al-Ibadi, S. Nefti-Meziani, and S. Davis, “Active Soft End Effectors for Efficient Grasping and Safe Handling,” IEEE Access, vol. 6, pp. 23591–23601, 2018, doi: 10.1109/ACCESS.2018.2829351.
  22. A. Al-Ibadi, S. Nefti-Meziani, and S. Davis, “Efficient Alaa Al-Ibadi | 29 Structure-Based Models for the McKibben Contraction Pneumatic Muscle Actuator: The Full Description of the Behaviour of the Contraction PMA,” Actuators, vol. 6, no. 4, p. 32, Oct. 2017, doi: 10.3390/act6040032.
  23. S. Neppalli and B. A. Jones, “Design, construction, and analysis of a continuum robot,” in 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2007, pp. 1503–1507, doi: 10.1109/IROS.2007.4399275.
  24. A. Al-Ibadi, S. Nefti-Meziani, S. Davis, and T. Theodoridis, “Novel Design and Position Control Strategy of a Soft Robot Arm,” Robotics, vol. 7, no. 4, p. 72, Nov. 2018, doi: 10.3390/robotics7040072.