The Permanent Magnet Synchronous Motor (PMSM) is commonly used as traction motors in the electric traction applications such as in subway train. The subway train is better transport vehicle due to its advantages of security, economic, health and friendly with nature. Braking is defined as removal of the kinetic energy stored in moving parts of machine. The plugging braking is the best braking offered and has the shortest time to stop. The subway train is a heavy machine and has a very high moment of inertia requiring a high braking torque to stop. The plugging braking is an effective method to provide a fast stop to the train. In this paper plugging braking system of the PMSM used in the subway train in normal and fault-tolerant operation is made. The model of the PMSM, three-phase Voltage Source Inverter (VSI) controlled using Space Vector Pulse Width Modulation technique (SVPWM), Field Oriented Control method (FOC) for independent control of two identical PMSMs and fault-tolerant operation is presented. Simulink model of the plugging braking system of PMSM in normal and fault tolerant operation is proposed using Matlab/Simulink software. Simulation results for different cases are given.
In this paper, the vector-controlled Permanent Magnet Synchronous Motor (PMSM) fed by Indirect Matrix Converter (IMC) is analyzed, designed, and simulated by using the IMC with Carrier Based Pulse Width Modulation (CBPWM). The CBPWM strategy is based on Space Vector Pulse Width Modulation (SVPWM) analysis, it is used to enhance the input current waveform, reduce the complexity of switching signals generation, and to solve the commutation problem. The traditional PMSM drive system is simulated for comparison with proposed drive system. The proposed drive system is compared to the traditional drive system using the Total Harmonic Distortion (THD). The comparison results show that the proposed drive system outperform the traditional drive system by THD different of 1/30 of input current and 1/1.5 of stator current, with high input power factor.
This paper suggests the use of the traditional proportional-integral-derivative (PID) controller to control the speed of multi Permanent Magnet Synchronous Motors (PMSMs). The PMSMs are commonly used in industrial applications due to their high steady state torque, high power, high efficiency, low inertia and simple control of their drives compared to the other motors drives. In the present study a mathematical model of three phase four poles PMSM is given and simulated. The closed loop speed control for this type of motors with voltage source inverter and abc to dq blocks are designed. The multi (Master/Slaves approach) method is proposed for PMSMs. Mathwork's Matlab/Simulink software package is selected to implement this model. The simulation results have illustrated that this control method can control the multi PMSMs successfully and give better performance.