Iraqi Journal for Electrical and Electronic Engineering
Login
Iraqi Journal for Electrical and Electronic Engineering
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
    • Proofreading Service
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
  • About
    • About Journal
    • Aims and Scope
    • Editorial Team
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Abstracting and indexing
    • Announcements
    • Contact

Search Results for particle-swarm-optimisation-pso-

Article
Parameter Identification of a PMSG Using a PSO Algorithm Based on Experimental Tests

A. J. Mahdi, W. H. Tang, Q. H. Wu

Pages: 39-44

PDF Full Text
Abstract

An accurate model for a permanent magnet syn- chronous generator (PMSG) is important for the design of a high-performance PMSG control system. The performance of such control systems is influenced by PMSG parameter variations under real operation conditions. In this paper, the electrical parameters of a PMSG (the phase resistance, the phase inductance and the rotor permanent magnet (PM) flux linkage) are identified by a particle swarm optimisation (PSO) algorithm based on experimental tests. The advantages of adopting the PSO algorithm in this research include easy implementation, a high computational efficiency and stable convergence characteristics. For PMSG parameter identification, the normalised root mean square error (NRMSE) between the measured and simulated data is calculated and minimised using PSO.

1 - 1 of 1 items

Search Parameters

Journal Logo
Iraqi Journal for Electrical and Electronic Engineering

College of Engineering, University of Basrah

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

Copyright © 2025 College of Engineering, University of Basrah. All rights reserved, including those for text and data mining, AI training, and similar technologies.