Many technical approaches were implemented in the antenna manufacturing process to maintain the desired miniaturiza- tion of the size of the antenna model which can be employed in various applied systems such as medical communication systems. Furthermore, over the past several years, nanotechnology science has rapidly grown in a wide variety of applications, which has given rise to novel ideas in the design of antennas based on nanoscale merits, leading to the use of antennae as an essential linkage between the human body and the different apparatus of the medical communication system. Some medical applications dealt with different antenna configurations, such as microstrip patch antenna or optical nanoantenna in conjugate with sensing elements, controlling units, and monitoring instruments to maintain a specified healthcare system. This study summarizes and presents a brief review of the recent applications of antennas in different medical communication systems involving highlights, and drawbacks with explores recommended issues related to using antennas in medical treatment.
Quantum-dot Cellular Automata (QCA) is a new emerging technology for designing electronic circuits in nanoscale. QCA technology comes to overcome the CMOS limitation and to be a good alternative as it can work in ultra-high-speed. QCA brought researchers attention due to many features such as low power consumption, small feature size in addition to high frequency. Designing circuits in QCA technology with minimum costs such as cells count and the area is very important. This paper presents novel structures of D-latch and D-Flip Flop with the lower area and cell count. The proposed Flip-Flop has SET and RESET ability. The proposed latch and Flip-Flop have lower complexity compared with counterparts in terms of cell counts by 32% and 26% respectively. The proposed circuits are designed and simulated in QCADesigner software.