Cover
Vol. 20 No. 2 (2024)

Published: December 31, 2024

Pages: 137-153

Review Article

Medical Communication Systems Utilizing Optical Nanoantenna and Microstrip Technology

Abstract

Many technical approaches were implemented in the antenna manufacturing process to maintain the desired miniaturiza- tion of the size of the antenna model which can be employed in various applied systems such as medical communication systems. Furthermore, over the past several years, nanotechnology science has rapidly grown in a wide variety of applications, which has given rise to novel ideas in the design of antennas based on nanoscale merits, leading to the use of antennae as an essential linkage between the human body and the different apparatus of the medical communication system. Some medical applications dealt with different antenna configurations, such as microstrip patch antenna or optical nanoantenna in conjugate with sensing elements, controlling units, and monitoring instruments to maintain a specified healthcare system. This study summarizes and presents a brief review of the recent applications of antennas in different medical communication systems involving highlights, and drawbacks with explores recommended issues related to using antennas in medical treatment.

References

  1. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv Opt Photonics, vol. 1, no. 3, p. 438–483, 2009.
  2. M. Leone and N. Robotti, “Guglielmo marconi, augusto righi and the invention of wireless telegraphy,” The Eu- ropean Physical Journal H, vol. 46, no. 1, p. 16, 2021.
  3. C. A. Balanis, Antenna theory: analysis and design. John wiley & sons, 2015.
  4. A. Singh and S. Singh, “A trapezoidal microstrip patch antenna on photonic crystal substrate for high speed thz applications,” Photonics and Nanostructures- Fundamentals and applications, vol. 14, p. 52–62, 2015.
  5. K. F. Lee and K.-F. Tong, Microstrip patch antennas. 2016.
  6. W. Grabssi, S. Izza, and A. Azrar, “Design and analysis of a microstrip patch antenna for medical applications,” in in 2017 5th International Conference on Electrical Engineering-Boumerdes (ICEE-B), p. 1–6, 2017.
  7. Z.-J. Yang, S.-Q. Xiao, L. Zhu, B.-Z. Wang, and H.-L. Tu, “A circularly polarized implantable antenna for 2.4- ghz ism band biomedical applications,” IEEE Antennas Wirel Propag Lett, vol. 16, p. 2554–2557, 2017.
  8. D. M. A. S. Dhillon and E. Sidhu, “Thz rectangular mi- crostrip patch antenna employing polyimide substrate for video rate imaging and homeland defence applica- tions,” Optik (Stuttg), vol. 144, p. 634–641, 2017.
  9. E. Mauriz, “Recent progress in plasmonic biosensing schemes for virus detection,” Sensors, vol. 20, no. 17, p. 4745, 2020.
  10. S. M. Shamim, N. Arafin, U. S. Dina, S. Shemu, and R. Karim, Analysis and Design of Microstrip Patch An- tenna on Photonic Band Gap (PBG) Substrate at Tera- hertz Regime. 2022.
  11. P. B. qnd J.-S. Huang and B. Hecht, “Nanoantennas for visible and infrared radiation,” Reports on Progress in Physics, vol. 75, no. 2, p. 024402, 2012.
  12. R. Liang, Optical design for biomedical imaging. SPIE press Bellingham, WA, 2010.
  13. S. K. K. et al., “Design and fabrication of flexible nanoantenna-based sensor using graphene-coated carbon cloth,” Advances in Materials Science and Engineering, vol. 2022, 2022.
  14. M. Tejasree, A. Taguru, M. Praneetha, K. Naveen, and P. V. Naidu, “Hybrid plasmonic nano-antenna design and analysis for optical applications,” in 2022 IEEE Delhi Section Conference (DELCON), p. 1–4, 2022.
  15. C. Divya and V. Koushick, “Design and implementation of slotted metamaterial stacked microstrip patch antenna for broadband applications,” in Journal of Physics: Con- ference Series, IOP Publishing, p. 012067, 2020.
  16. X. An, S. Erramilli, and B. M. Reinhard, “Plasmonic nano-antimicrobials: properties, mechanisms and appli- cations in microbe inactivation and sensing,” Nanoscale, vol. 13, no. 6, p. 3374–3411, 2021.
  17. G. Isiklar, I. C. Cetin, M. Algun, , and . ERG ¨UL, “De- sign and analysis of nanoantenna arrays for imaging and sensing applications at optical frequencies,” Adv. Electromagn, vol. 8, no. 2, p. 18–27, 2019.
  18. M. Lin, H. Hu, S. Zhou, and S. Xu, “Soft wearable devices for deep-tissue sensing,” Nat Rev Mater, p. 1–20, 2022.
  19. P. Johari, H. Pandey, and J. M. Jornet, “Interconnecting wearable devices with nano-biosensing implants through optical wireless communications,” in Optical Diagnos- tics and Sensing XVIII,Toward Point-of-Care Diagnos- tics, SPIE, p. 281–292, 2018.
  20. E. Mauriz and L. M. Lechuga, “Plasmonic biosensors for single-molecule biomedical analysis,” Biosensors (Basel), vol. 11, no. 4, p. 123, 2021. 152 | Badr, Murdas & Aldhahab
  21. T. Khan, M. Civas, O. Cetinkaya, N. A. Abbasi, and O. B. Akan, “Nanosensor networks for smart health care,” in Nanosensors for Smart Cities, Elsevier, p. 387–403, 2020.
  22. Q. Rubani, G. R. Begh, and S. H. Gupta, “Design and investigation of a mimo nanoantenna operating at optical frequency,” Optik (Stuttg), vol. 223, p. 165481, 2020.
  23. S. Dash and A. Patnaik, “Impact of silicon-based sub- strates on graphene thz antenna,” Physica E Low Dimens Syst Nanostruct, vol. 126, p. 114479, 2021.
  24. D. Samanta, M. P. Karthikeyan, A. Banerjee, and H. Inokawa, “Tunable graphene nanopatch antenna de- sign for on-chip integrated terahertz detector arrays with potential application in cancer imaging,” Nanomedicine, vol. 16, no. 12, p. 1035–1047, 2021.
  25. S. S. Singhwal, L. Matekovits, I. Peter, and B. K. Kanaujia, “Application of dielectric resonator antenna in implantable medical devices,” in 2021 IEEE Inter- national Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI), IEEE, p. 80–81, 2021.
  26. E. Thangaselvi and K. M. alias Jeyanthi, “Implementa- tion of flexible denim nickel copper rip stop textile an- tenna for medical application,” Cluster Comput, vol. 22, p. 635–645, 2019.
  27. A. Othman, N. I. S. Shaari, A. M. Zobilah, N. A. Shairi, and Z. Zakaria, “Design of compact ultra-wideband an- tenna for microwave medical imaging application,” In- donesian Journal of Electrical Engineering and Com- puter Science (IJEECS), vol. 15, no. 3, p. 1197–1202, 2019.
  28. R. J. et al., “Analysis and design of dual-band folded- shorted patch antennas for robust wearable applications,” IEEE Open Journal of Antennas and Propagation, vol. 1, p. 239–252, 2020.
  29. N. A. Malik, T. Ajmal, P. Sant, and M. Ur-Rehman, “A compact size implantable antenna for bio-medical applications,” in 2020 International Conference on UK- China Emerging Technologies (UCET), IEEE, pp. 1–4, 2020.
  30. C. Gayathri and S. Venkatanarayanan, “A miniaturized circular maze shaped antenna for implantable health care applications,” J Ambient Intell Humaniz Comput, vol. 12, p. 4757–4763, 2021.
  31. H. Zerrouki and S. Azzaz-Rahmani, “Design of dual- band (mics and ism) implantable antenna for wireless medical telemetry applications,” Journal of Electrical Systems, vol. 17, no. 3, 2021.
  32. K. Ramamoorthy, K. R. Kiran, E. Thangaselvi, S. Karthikeyan, and T. Chelladurai, “Design and analysis of square microstrip patch antenna at 2.4 ghz band used for iot based health care monitoring,” in AIP Conference Proceedings, AIP Publishing LLC, p. 030020, 2022.
  33. G. P. Ramesh, H. Abdullah, and B. D. Parameshachari, “Design and comparative analysis of microstrip patch an- tenna by using various materials in hfss,” in Distributed Computing and Optimization Techniques: Select Pro- ceedings of ICDCOT 2021, Springer, p. 303–312, 2022.
  34. S. Suganthi and P. T. Selvan, “Trapezoidal microstrip patch antenna array for low frequency medical ap- plications,” Wirel Pers Commun, vol. 126, no. 2, p. 1721–1732, 2022.
  35. E. Thangaselvi, E. Kumaraswamy, K. Ramamoorthy, S. Karthikeyan, and T. Chelladurai, “Design and fabrica- tion of rectangular microstrip patch antenna at ism band for medical applications,” in AIP Conference Proceed- ings, AIP Publishing LLC, p. 030015, 2022.
  36. S. S. V. et al., “Design of uwb wearable microstrip patch antenna for wireless body worn applications,” in AIP Conference Proceedings, AIP Publishing LLC, p. 020158, 2023.
  37. R. Prasanna, G. T. Selvi, K. Annaram, K. Venkatalak- shmi, M. Jenath, and B. P. Prathaban, “Multiband flexi- ble ultra-wideband antenna for wearable electronics and biomedical applications,” Int J Multiscale Comput Eng, vol. 21, 2023.
  38. H. Kaur and P. Chawla, “Design and evaluation of a fractal wearable textile antenna for medical applications,” Wirel Pers Commun, vol. 128, no. 1, p. 683–699, 2023.
  39. P. K. S. Purnendu, A. B. Anwar, R. Islam, D. Mollik, M. A. Hossain, and M. Ahmad, “Design of 8× 8 mi- crostrip array antenna for ism and k-band applications,” in Proceedings of International Conference on Informa- tion and Communication Technology for Development: ICICTD 2022, Springer, p. 153–162, 2023.
  40. M. S. Rana, O. Islam, S. A. Shikha, and M. Faisal, “Iot application using a rectangular 2.4 ghz microstrip patch antenna,” in 2023 International Conference for Advance- ment in Technology (ICONAT), IEEE, p. 1–4, 2023. 153 | Badr, Murdas & Aldhahab
  41. E. Karooby and N. Granpayeh, “Potential applications of nanoshell bow-tie antennas for biological imaging and hyperthermia therapy,” Optical Engineering, vol. 58, no. 6, p. 65102, 2019.
  42. B. Schuler, L. K¨uhner, M. Hentschel, H. Giessen, and C. Tar´ın, “Adaptive method for quantitative estimation of glucose and fructose concentrations in aqueous solutions based on infrared nanoantenna optics,” Sensors, vol. 19, no. 14, p. 3053, 2019.
  43. R. H. Mahdi and H. A. Jawad, “Thermal response of skin diseased tissue treated by plasmonic nanoantenna,” International Journal of Electrical and Computer Engi- neering, vol. 10, no. 3, p. 2969, 2020.
  44. R. A. M. Lameirinhas, J. P. N. Torres, and A. Baptista, “A sensor based on nanoantennas,” Applied Sciences, vol. 10, no. 19, p. 6837, 2020.
  45. M. Kumar, S. Goel, A. Rajawat, and S. H. Gupta, “De- sign of optical antenna operating at terahertz frequency for in-vivo cancer detection,” Optik (Stuttg), vol. 216, p. 164910, 2020.
  46. M. J. Rabienejhad, A. Mazaheri, and M. Davoudi- Darareh, “Design and optimization of nano-antenna for thermal ablation of liver cancer cells,” Chinese Physics B, vol. 30, no. 4, p. 048401, 2021.
  47. A. Sangwan and J. M. Jornet, “Joint nanoscale communi- cation and sensing enabled by plasmonic nano-antennas,” in Proceedings of the Eight Annual ACM International Conference on Nanoscale Computing and Communica- tion, p. 1–6, 2021.
  48. Q. Z. et al, “Dynamic real-time imaging of living cell traction force by piezo-phototronic light nano-antenna array,” Sci Adv, vol. 7, no. 22, p. eabe7738, 2021.
  49. C. Hou, K. Wang, W. Zhang, S. Wang, and L. Dong, “Plasmonic nano-antennas enhanced near-infrared non- invasive glucose detection,” in 2022 IEEE Interna- tional Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO), IEEE, p. 482–486, 2022.
  50. M. D. GEY˙IKO ˘GLU, K. O. . Hilal, B. C¸ AVUS¸O ˘GLU, M. ERTUGRUL, and K. ABBAS˙IAN, “Designing graphene-based antenna for terahertz wave ablation (twa) system,” Erzincan University Journal of Science and Technology, vol. 15, no. 2, p. 507–514.
  51. C. Close, K. Trofymchuk, L. Grabenhorst, B. Lalkens, V. Glembockyte, and P. Tinnefeld, “Maximizing the accessibility in dna origami nanoantenna plasmonic hotspots,” Adv Mater Interfaces, vol. 9, no. 24, p. 2200255, 2022.
  52. A. Sangwan and J. M. Jornet, “Joint communication and bio-sensing with plasmonic nano-systems to pre- vent the spread of infectious diseases in the internet of nano-bio things,” IEEE Journal on Selected Areas in Communications, vol. 40, no. 11, p. 3271–3284, 2022.
  53. A. M. Ghanim, A. E. Alsayed, A. Yahia, and M. A. Swillam, “Dielectric nanoantennas–enhanced localized surface plasmon resonance for sensing applications,” in 2022 Photonics North (PN), IEEE, p. 1, 2022.
  54. S. F. M. Bouchra and Z. K. Djalal, “Design of optical gold printed antenna in terahertz band for on body wban applications,” Microwave Review, vol. 28, no. 1, 2022.
  55. G. Brunetti, N. Sasanelli, M. N. Armenise, and C. Ciminelli, “Nanoscale optical trapping by means of dielectric bowtie,” in Photonics, MDPI, p. 425, 2022.
  56. J. Xie, Z. Ren, J. Wei, W. Liu, J. Zhou, and C. Lee, “Zero- bias long-wave infrared nanoantenna-mediated graphene photodetector for polarimetric and spectroscopic sens- ing,” Adv Opt Mater, p. 2202867, 2023.
  57. J. Sendra, F. Haake, M. Calvo, H. Galinski, and R. Spole- nak, “Scanning reflectance anisotropy microscopy for multi-material strain mapping,” arXiv preprint arXiv 2302, p. 04095, 2023.
  58. A. J. et al., “Wireless electrical-molecular quantum sig- nalling for cancer cell induced death,” bioRxiv, p. 2023, 2023.
  59. R. H. Mahdi and H. A. Jawad, “Plasmonic optical nano-antenna for biomedical applications,” in Plasmonic Nanostructures-Basic Concepts, Optimization and Ap- plications, IntechOpen, 2023.
  60. B. Moulfi, S. Ferouani, and D. Ziani-Kerarti, “Nanorect- angular printed gold antenna for on-human body wire- less body network applications,” Telecommunications and Radio Engineering, vol. 82, no. 1, 2023.