Everything in its way to be computerized and most of the objects are coming to be smart in present days. Modern Internet of Thing (IoT) allows these objects to be on the network by using IoT platforms. IoT is a smart information society that consists of smart devices; these devices can communicate with each other without human's intervention. IoT systems require flexible platforms. Through the use of Field Programmable Gate Array (FPGA), IoT devices can interface with the outside world easily with low power consumption, low latency, and best determinism. FPGAs provide System on Chip (SoC) technique due to FPGAs scalability which enables the designer to implement and integrate large number of hardware clocks at single chip. FPGA can be deemed as a special purpose reprogrammable processor since it can process signals at its input pins, manipulate them, and give off signals on the output pins. In this paper, using FPGA for IoT is the limelight.
The use of smart network applications based on the Internet of Things is increasing, which increases the attractiveness of malicious activities, leading to the need to increase the adequate security of these networks. In this paper, the latest recent breakthroughs in blockchain for the Internet of Things are examined in the context of electronic health (e-health), smart cities, smart transportation, and other applications in this article. Research gaps and possible solutions are discussed, such as security, connection, transparency, privacy, and the IoT's blockchain regulatory challenges. In addition, the most important consensus algorithms used in the blockchain have been discussed, including Proof of Work, Proof of Stake, and Proof of Authority, each of which operates within certain rules.
In this work, a healthcare monitoring system-based Internet of Medical Things (IoMT) is proposed, implemented, analyze it by artificial intelligence using fuzzy logic. Atmega microcontroller was used to achieve the function of the proposed work and provide the area for monitoring and Analytic(decision) to the caretakers or doctors through putting the results in the platform. In this paper, the heart rate pulse sensor and infrared temperature sensor are chosen, which give skin temperature and room temperature to provide their results to the caretaker. The decision that gives the patient is in a normal state, or the fuzzy logic does an abnormal state or risk state. The fuzzy logic is used for it accurate and fast in processing data and gives a result very closer to the reality in smart health services. IoMT enables the doctors and caretakers to monitor the patient easily at any time and any place by using their intelligent laptops, tablets, and phones. Finally, the proposed system can contribute to the construction of a wide healthcare monitoring system in the unit or in the department that follows on for the hospital. Therefore, Doctors can improve the accuracy of the diagnosis, as they receive all the patient data necessary.