Vast number of researches deliberated the separation of speech mixtures due to the importance of this field of research . Whereas its applications became widely used in our daily life; such as mobile conversation, video conferences, and other distant communications. These sorts of applications may suffer from what is well known the cocktail party problem. Independent component analysis (ICA) has been extensively used to overcome this problem and many ICA algorithms based on different techniques have been developed in this context. Still coming up with some suitable algorithms to separate speech mixed signals into their original ones is of great importance. Hence, this paper utilizes thirty ICA algorithms for estimating the original speech signals from mixed ones, the estimation process is carried out with the purpose of testing the robustness of the algorithms once against a different number of mixed signals and another against different lengths of mixed signals. Three criteria namely Spearman correlation coefficient, signal to interference ratio, and computational demand have been used for comparing the obtained results. The results of the comparison were sufficient to signify some algorithms which are appropriate for the separation of speech mixtures.
Various methods have been exploited in the blind source separation problems, especially in cocktail party problems. The most commonly used method is the independent component analysis (ICA). Many linear and nonlinear ICA methods, such as the radial basis functions (RBF) and self-organizing map (SOM) methods utilise neural networks and genetic algorithms as optimisation methods. For the contrast function, most of the traditional methods, especially the neural networks, use the gradient descent as an objective function for the ICA method. Most of these methods trap in local minima and consume numerous computation requirements. Three metaheuristic optimisation methods, namely particle, quantum particle, and glowworm swarm optimisation methods are introduced in this study to enhance the existing ICA methods. The proposed methods exhibit better results in separation than those in the traditional methods according to the following separation quality measurements: signal-to-noise ratio, signal-to-interference ratio, log-likelihood ratio, perceptual evaluation speech quality and computation time. These methods effectively achieved an independent identical distribution condition when the sampling frequency of the signals is 8 kHz.
Independent Component Analysis (ICA) has been successfully applied to a variety of problems, from speaker identification and image processing to functional magnetic resonance imaging (fMRI) of the brain. In particular, it has been applied to analyze EEG data in order to estimate the sources form the measurements. However, it soon became clear that for EEG signals the solutions found by ICA often depends on the particular ICA algorithm, and that the solutions may not always have a physiologically plausible interpretation. Therefore, nowadays many researchers are using ICA largely for artifact detection and removal from EEG, but not for the actual analysis of signals from cortical sources. However, a recent modification of an ICA algorithm has been applied successfully to EEG signals from the resting state. The key idea was to perform a particular preprocessing and then apply a complex- valued ICA algorithm. In this paper, we consider multiple complex-valued ICA algorithms and compare their performance on real-world resting state EEG data. Such a comparison is problematic because the way of mixing the original sources (the “ground truth”) is not known. We address this by developing proper measures to compare the results from multiple algorithms. The comparisons consider the ability of an algorithm to find interesting independent sources, i.e. those related to brain activity and not to artifact activity. The performance of locating a dipole for each separated independent component is considered in the comparison as well. Our results suggest that when using complex-valued ICA algorithms on preprocessed signals the resting state EEG activity can be analyzed in terms of physiological properties. This reestablishes the suitability of ICA for EEG analysis beyond the detection and removal of artifacts with real-valued ICA applied to the signals in the time-domain.