The demand for a secured web storage system is increasing daily for its reliability which ensures data privacy and confidentiality. The proposed paper aims to find the most secure ways to maintain integrity and protect privacy and security in healthcare management systems. The Advanced Encryption Standard (AES) algorithm is used to encrypt data transferred by providing a means to check the integrity of information transmitted and make it more immune to cyberattack techniques, this was implemented by using Keyed-Hash Message Authentication Code (HMAC) and Secured Hash Algorithm-256 (SHA-256). The risk of exposure to attackers can be avoided by using honeypot systems combined with Intrusion detection systems (IDSs) as a firewall system is not effective against such attacks alone. The experimental results evaluate the proposed security health information management system by comparing the performance of the encryption algorithm based on encryption time, memory and CPU usage, and entropy for different plaintext lengths. In addition, it can be seen that when changing the AES key size, more memory and time are required the longer the key size is used. The 128 bits AES key is therefore advised if the system must operate in hard real-time.
The incredible growth of FPGA capabilities in recent years and the new included features have made them more and more attractive for numerous embedded systems. There is however an important shortcoming concerning security of data and design. Data security implies the protection of the FPGA application in the sense that the data inside the circuit and the data transferred to/from the peripheral circuits during the communication are protected. This paper suggests a new method to support the security of any FPGA platform using network processor technology. Low cost IP2022 UBICOM network processor was used as a security shield in front of any FPGA device. It was supplied with the necessary security methods such as AES ciphering engine, SHA-1, HMAC and an embedded firewall to provide confidentiality, integrity, authenticity, and packets filtering features.
In the era of modern trends such as cloud computing, social media applications, emails, mobile applications, and URLs that lead to increased risks for defrauding authorized users, and then the attackers try to gain illegal access to accounts of users through a malicious attack. The phishing attack is one of the dangerous attacks caused to access of authorized account illegally way. The finances, business, banking, and other sensitive in states are faces by this type of attacks due to the important information they have. In this paper, we propose a secure verification scheme that can overcome the above-mentioned issues. Additionally, the proposed scheme can resist famous cyberattacks such as impersonate attacks, MITM attacks. Moreover, the proposed scheme has security features like strong verification, forward secrecy, user’s identity anomaly. The security analysis and the experimental results proved the strongest of the proposed scheme compared with other related works. Finally, our proposed scheme balanced between the performance and the security merits.