Iraqi Journal for Electrical and Electronic Engineering
Login
Iraqi Journal for Electrical and Electronic Engineering
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
    • Proofreading Service
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
  • About
    • About Journal
    • Aims and Scope
    • Editorial Team
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Abstracting and indexing
    • Announcements
    • Contact

Search Results for eddy-current-barking

Article
Analysis of Permanent Magnet Material Influence on Eddy Current Braking Efficiency

Ahmed M. Salman, Jamal A.-K. Mohammed, Farag M. Mohammed

Pages: 220-225

PDF Full Text
Abstract

Traditional friction brakes can generate problems such as high braking temperature and pressure, cracking, and wear, leading to braking failure and user damage. Eddy current brake systems (contactless magnetic brakes) are one method used in motion applications. They are wear-free, less temperature-sensitive, quick, easy, and less susceptible to wheel lock, resulting in less brake failure due to the absence of physical contact between the magnet and disc. Important factors that can affect the performance of the braking system are the type of materials manufactured for the permanent magnets. This paper examines the performance of the permanent magnetic eddy current braking (PMECB) system. Different kinds of permanent magnets are proposed in this system to create eddy currents, which provide braking for the braking system is simulated using FEA software to demonstrate the efficiency of braking in terms of force production, energy dissipation, and overall performance findings demonstrated that permanent magnets consisting of neodymium, iron, and boron consistently provided the maximum braking effectiveness. The lowest efficiency is found in ferrite, which has the second-lowest efficiency behind samarium cobalt. This is because ferrite has a weaker magnetic field. Because of this, the PMECBS based on NdFeB magnets has higher power dissipation values, particularly at higher speeds.

1 - 1 of 1 items

Search Parameters

Journal Logo
Iraqi Journal for Electrical and Electronic Engineering

College of Engineering, University of Basrah

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

Copyright © 2025 College of Engineering, University of Basrah. All rights reserved, including those for text and data mining, AI training, and similar technologies.