Cryptography is one of the technological means to provide security to data being transmitted on information and communication systems. When it is necessary to securely transmit data in limited bandwidth, both compression and encryption must be performed. Researchers have combined compression and encryption together to reduce the overall processing time. In this paper, new partial encryption schemes are proposed to encrypt only part of the compressed image. Soft and hard threshold compression methods are used in the compression step and the Advanced Encryption Standard (AES) cipher is used for the encryption step. The effect of different threshold values on the performance of the proposed schemes are studied. The proposed partial encryption schemes are fast, secure, and do not reduce the compression performance of the underlying selected compression methods.
The use of image communication has increased in recent years. In this paper, new partial encryption schemes are used to encrypt only part of the compressed data. Only 6.25-25% of the original data is encrypted for four different images, resulting in a significant reduction in encryption and decryption time. In the compression step, an advanced clustering analysis technique (Fuzzy C-means (FCM)) is used. In the encryption step, the permutation cipher is used. The effect of number of different clusters is studied. The proposed partial encryption schemes are fast and secure, and do not reduce the compression performance of the underlying selected compression methods as shown in experimental results and conclusion.
Arial images are very high resolution. The automation for map generation and semantic segmentation of aerial images are challenging problems in semantic segmentation. The semantic segmentation process does not give us precise details of the remote sensing images due to the low resolution of the aerial images. Hence, we propose an algorithm U-Net Architecture to solve this problem. It is classified into two paths. The compression path (also called: the encoder) is the first path and is used to capture the image's context. The encoder is just a convolutional and maximal pooling layer stack. The symmetric expanding path (also called: the decoder) is the second path, which is used to enable exact localization by transposed convolutions. This task is commonly referred to as dense prediction, which is completely connected to each other and also with the former neurons which gives rise to dense layers. Thus it is an end-to-end fully convolutional network (FCN), i.e. it only contains convolutional layers and does not contain any dense layer because of which it can accept images of any size. The performance of the model will be evaluated by improving the image using the proposed method U-NET and obtaining an improved image by measuring the accuracy compared with the value of accuracy with previous methods.
Non-Orthogonal Multiple Access (NOMA) has been promised for fifth generation (5G) cellular wireless network that can serve multiple users at same radio resources time, frequency, and code domains with different power levels. In this paper, we present a new simulation compression between a random location of multiple users for Non-Orthogonal Multiple Access (NOMA) and Orthogonal Multiple Access (OMA) that depend on Successive Interference Cancellation (SIC) and generalized the suggested joint user pairing for NOMA and beyond cellular networks. Cell throughput and Energy Efficiency (EE) are gained are developed for all active NOMA user in suggested model. Simulation results clarify the cell throughput for NOMA gained 7 Mpbs over OMA system in two different scenarios deployed users (3 and 4). We gain an attains Energy Efficiency (EE) among the weak power users and the stronger power users.
The relative intensity noise (RIN) characteristics in distributed feedback (DFB) lasers are analyzed theoretically by proposing a new methodology. In addition to temperature variation (T), the effect of other model parameters such as injection current (I inj ), active layer volume (V), spontaneous emission (β sp ) and gain compression (ε) factors on RIN characteristics is investigated. The numerical simulations shows, the peak RIN level can be reduced to around –150 dB/Hz, while relaxation oscillation frequency (ROF) is shifted towards 5.6 GHz. In addition, the RIN level is increased with temperature by the rate of 0.2 dB/ºC and ROF is reduced by the rate of 0.018 GHz/ºC. Results show, the low RIN level can be obtained by selecting model parameters reasonably.
Recently, chaos theory has been widely used in multimedia and digital communications due to its unique properties that can enhance security, data compression, and signal processing. It plays a significant role in securing digital images and protecting sensitive visual information from unauthorized access, tampering, and interception. In this regard, chaotic signals are used in image encryption to empower the security; that’s because chaotic systems are characterized by their sensitivity to initial conditions, and their unpredictable and seemingly random behavior. In particular, hyper-chaotic systems involve multiple chaotic systems interacting with each other. These systems can introduce more randomness and complexity, leading to stronger encryption techniques. In this paper, Hyper-chaotic Lorenz system is considered to design robust image encryption/ decryption system based on master-slave synchronization. Firstly, the rich dynamic characteristics of this system is studied using analytical and numerical nonlinear analysis tools. Next, the image secure system has been implemented through Field-Programmable Gate Arrays (FPGAs) Zedboard Zynq xc7z020-1clg484 to verify the image encryption/decryption directly on programmable hardware Kit. Numerical simulations, hardware implementation, and cryptanalysis tools are conducted to validate the effectiveness and robustness of the proposed system.
Currently, an approach involving a coder with a combined structure for compressing images combining several different coders, the system for connecting them to various bit planes, and the control system for these connections have not been studied. Thus, there is a need to develop a structure and study the effectiveness of a combined codec for compressing images of various types without loss in the spatial domain based on arithmetic and (Run-Length Encoding) RLE-coding algorithms. The essence of separate effective coding is to use independent coders of the same type or one coder connected to the planes alternately in order to compress the higher and lower bit planes of the image or their combinations. In this paper, the results of studying the effectiveness of using a combination of arithmetic and RLE coding for several types of images are presented. As a result of developing this structure, the effectiveness of combined coding for compressing the differences in the channels of hyperspectral images (HSI) has been established, as hyperspectral images consist of multi-spectral bands, instead of just the typical three bands (RGB) or (YCbCr) found in regular images. Where, each pixel in a hyperspectral image represents the entire spectrum of light reflected by the object or scene at that particular location.