Iraqi Journal for Electrical and Electronic Engineering
Login
Iraqi Journal for Electrical and Electronic Engineering
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
    • Proofreading Service
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
  • About
    • About Journal
    • Aims and Scope
    • Editorial Team
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Abstracting and indexing
    • Announcements
    • Contact

Search Results for amicrorobot

Article
On the Actuation Technologies of Biomedical Microrobot: A Summarized Review

Anwar Hamza Bresam, Haider Al-Mumen

Pages: 22-32

PDF Full Text
Abstract

In recent years, wireless microrobots have gotten more attention due to their huge potential in the biomedical field, especially drug delivery. Microrobots have several benefits, including small size, low weight, sensitivity, and flexibility. These characteristics have led to microscale improvements in control systems and power delivery with the development of submillimeter-sized robots. Wireless control of individual mobile microrobots has been achieved using a variety of propulsion systems, and improving the actuation and navigation of microrobots will have a significant impact. On the other hand, actuation tools must be integrated and compatible with the human body to drive these untethered microrobots along predefined paths inside biological environments. This study investigated key microrobot components, including medical applications, actuation systems, control systems, and design schemes. The efficiency of a microrobot is impacted by many factors, including the material, structure, and environment of the microrobot. Furthermore, integrating a hybrid actuation system and multimodal imaging can increase the microrobot’s navigation effect, imaging algorithms, and working environment. In addition, taking into account the human body’s moving distance, autonomous actuating technology could be used to deliver microrobots precisely and quickly to a specific position using a combination of quick approaches.

1 - 1 of 1 items

Search Parameters

Journal Logo
Iraqi Journal for Electrical and Electronic Engineering

College of Engineering, University of Basrah

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

Copyright © 2025 College of Engineering, University of Basrah. All rights reserved, including those for text and data mining, AI training, and similar technologies.