Iraqi Journal for Electrical and Electronic Engineering
Login
Iraqi Journal for Electrical and Electronic Engineering
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
    • Proofreading Service
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
  • About
    • About Journal
    • Aims and Scope
    • Editorial Team
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Abstracting and indexing
    • Announcements
    • Contact

Search Results for Ramzy S. Ali

Article
Identification and Control of Impressed Current Cathodic Protection System

Bassim N. Abdul Sada, Ramzy S. Ali, Khearia A. Mohammed Ali

Pages: 214-220

PDF Full Text
Abstract

In this paper the identification and control for the impressed current cathodic protection (ICCP) system are present. Firstly, an identification model using an Adaptive Neuro-Fuzzy Inference Systems (ANFIS) was implemented. The identification model consists of four inputs which are the aeration flow rates, the temperature, conductivity, and protection current, and one output that represented by the structure-to-electrolyte potential. The used data taken from an experimental CP system model, type impressed current submerged sample pipe carbon steel. Secondly, two control techniques are used. The first control technique use a conventional Proportional-Integral-Derivative (PID) controller, while the second is the fuzzy controller. The PID controller can be applied to control ICCP system and quite easy to implement. But, it required very fine tuning of its parameters based on the desired value. Furthermore, it needed time response more than fuzzy controller to track reference voltage. So the fuzzy controller has a faster and better response.

Article
Designing robust Mixed H /H PID Controllers based Intelligent Genetic Algorithm

Ramzy S. Ali Al-Waily, Ali Abdullah K. Al-Thuwainy

Pages: 25-34

PDF Full Text
Abstract

It's not easy to implement the mixed / optimal controller for high order system, since in the conventional mixed / optimal feedback the order of the controller is much than that of the plant. This difficulty had been solved by using the structured specified PID controller. The merit of PID controllers comes from its simple structure, and can meets the industry processes. Also it have some kind of robustness. Even that it's hard to PID to cope the complex control problems such as the uncertainty and the disturbance effects. The present ideas suggests combining some of model control theories with the PID controller to achieve the complicated control problems. One of these ideas is presented in this paper by tuning the PID parameters to achieve the mixed / optimal performance by using Intelligent Genetic Algorithm (IGA). A simple modification is added to IGA in this paper to speed up the optimization search process. Two MIMO example are used during investigation in this paper. Each one of them has different control problem.

Article
Table-Based Matching Algorithm for Localization and Orientation Estimation of Multi-Robot System

Ola A. Hasan, Abdulmuttalib T. Rashid, Ramzy S. Ali

Pages: 53-71

PDF Full Text
Abstract

In this paper, a new algorithm called table-based matching for multi-robot (node) that used for localization and orientation are suggested. The environment is provided with two distance sensors fixed on two beacons at the bottom corners of the frame. These beacons have the ability to scan the environment and estimate the location and orientation of the visible nodes and save the result in matrices which are used later to construct a visible node table. This table is used for matching with visible-robot table which is constructed from the result of each robot scanning to its neighbors with a distance sensor that rotates at 360⁰; at this point, the location and identity of all visible nodes are known. The localization and orientation of invisible robots rely on the matching of other tables obtained from the information of visible robots. Several simulations implementation are experienced on a different number of nodes to submit the performance of this introduced algorithm.

Article
Centralized approach for multi-node localization and identification

Ola A. Hasan, Ramzy S. Ali, Abdulmuttalib T. Rashid

Pages: 178-187

PDF Full Text
Abstract

A new algorithm for the localization and identification of multi-node systems has been introduced in this paper; this algorithm is based on the idea of using a beacon provided with a distance sensor and IR sensor to calculate the location and to know the identity of each visible node during scanning. Furthermore, the beacon is fixed at middle of the frame bottom edge for a better vision of nodes. Any detected node will start to communicate with the neighboring nodes by using the IR sensors distributed on its perimeter; that information will be used later for the localization of invisible nodes. The performance of this algorithm is shown by the implementation of several simulations .

Article
Parameter Estimation of a Permanent Magnetic DC Motor

Murtadha L. Awoda, Ramzy S. Ali

Pages: 28-36

PDF Full Text
Abstract

The identification of system parameters plays an essential role in system modeling and control. This paper presents a parameter estimation for a permanent magnetic DC motor using the simulink design optimization method. The parameter estimation may be represented as an optimization problem. Firstly, the initial values of the DC motor parameters are extracted using the dynamic model through measuring the values of voltage, current, and speed of the motor. Then, these values are used as an initial value for simulink design optimization. The experimentally input- output data can be collected using a suggested microcontroller based circuit that will be used later for estimating the DC motor parameters by building a simulink model. Two optimization algorithms are used, the pattern search and the nonlinear least square. The results show that the nonlinear least square algorithm gives a more accurate result that almost approaches to the actual measured speed response of the motor. )

Article
Novel Optimization Algorithm Inspired by Camel Traveling Behavior

Mohammed Khalid Ibrahim, Ramzy Salim Ali

Pages: 167-177

PDF Full Text
Abstract

This article presents a novel optimization algorithm inspired by camel traveling behavior that called Camel algorithm (CA). Camel is one of the extraordinary animals with many distinguish characters that allow it to withstand the severer desert environment. The Camel algorithm used to find the optimal solution for several different benchmark test functions. The results of CA and the results of GA and PSO algorithms are experimentally compared. The results indicate that the promising search ability of camel algorithm is useful, produce good results and outperform the others for different test functions.

Article
A New Algorithm Based on Pitting Corrosion for Engineering Design Optimization Problems

Hussien A. Al-mtory, Falih M. Alnahwi, Ramzy S. Ali

Pages: 190-206

PDF Full Text
Abstract

This paper presents a new optimization algorithm called corrosion diffusion optimization algorithm (CDOA). The proposed algorithm is based on the diffusion behavior of the pitting corrosion on the metal surface. CDOA utilizes the oxidation and reduction electrochemical reductions as well as the mathematical model of Gibbs free energy in its searching for the optimal solution of a certain problem. Unlike other algorithms, CDOA has the advantage of dispensing any parameter that need to be set for improving the convergence toward the optimal solution. The superiority of the proposed algorithm over the others is highlighted by applying them on some unimodal and multimodal benchmark functions. The results show that CDOA has better performance than the other algorithms in solving the unimodal equations regardless the dimension of the variable. On the other hand, CDOA provides the best multimodal optimization solution for dimensions less than or equal to (5, 10, 15, up to 20) but it fails in solving this type of equations for variable dimensions larger than 20. Moreover, the algorithm is also applied on two engineering application problems, namely the PID controller and the cantilever beam to accentuate its high performance in solving the engineering problems. The proposed algorithm results in minimized values for the settling time, rise time, and overshoot for the PID controller. Where the rise time, settling time, and maximum overshoot are reduced in the second order system to 0.0099, 0.0175 and 0.005 sec., in the fourth order system to 0.0129, 0.0129 and 0 sec, in the fifth order system to 0.2339, 0.7756 and 0, in the fourth system which contains time delays to 1.5683, 2.7102 and 1.80 E-4 sec., and in the simple mass-damper system to 0.403, 0.628 and 0 sec., respectively. In addition, it provides the best fitness function for the cantilever beam problem compared with some other well-known algorithms.

Article
Session to Session Transfer Learning Method Using Independent Component Analysis with Regularized Common Spatial Patterns for EEG-MI Signals

Zaineb M. Alhakeem, Ramzy S. Ali

Pages: 13-27

PDF Full Text
Abstract

Training the user in Brain-Computer Interface (BCI) systems based on brain signals that recorded using Electroencephalography Motor Imagery (EEG-MI) signal is a time-consuming process and causes tiredness to the trained subject, so transfer learning (subject to subject or session to session) is very useful methods of training that will decrease the number of recorded training trials for the target subject. To record the brain signals, channels or electrodes are used. Increasing channels could increase the classification accuracy but this solution costs a lot of money and there are no guarantees of high classification accuracy. This paper introduces a transfer learning method using only two channels and a few training trials for both feature extraction and classifier training. Our results show that the proposed method Independent Component Analysis with Regularized Common Spatial Pattern (ICA-RCSP) will produce about 70% accuracy for the session to session transfer learning using few training trails. When the proposed method used for transfer subject to subject the accuracy was lower than that for session to session but it still better than other methods.

Article
Wirelessly Controlled Irrigation System

Zain-Aldeen S. A.Rhman, Ramzy S. Ali, Basil H. Jasim

Pages: 89-99

PDF Full Text
Abstract

In the city of Basrah, there is an urgent need to use the water for irrigation process more efficiently for many reasons: one of them, the high temperature in long summer season and the other is the lack of sources fresh water sources. In this work, a smart irrigation system based wireless sensor networks (WSNs) is implemented. This system consists of the main unit that represented by an Arduino Uno board which include an ATmega328 microcontroller, different sensors as moisture sensors, temperature sensors, humidity sensors, XBee modules and solenoid valve. Zigbee technology is used in this project for implementing wireless technology. This system has two modes one manual mode, the other is a smart mode. The set points must be changed manually according to the specified season to satisfy the given conditions for the property irrigation, and the smart operation of the system will be according to these set points.

Article
Design of PLL Controller for Resonant Frequency Tracking of Five-Level Inverter Used for Induction Heating Applications

Aws H. Al-Jrew, Jawad R. Mahmood, Ramzy S. Ali

Pages: 169-178

PDF Full Text
Abstract

In this work, the phase lock loop PLL-based controller has been adopted for tracking the resonant frequency to achieve maximum power transfer between the power source and the resonant load. The soft switching approach has been obtained to reduce switching losses and improve the overall efficiency of the induction heating system. The jury’s stability test has been used to evaluate the system’s stability. In this article, a multilevel inverter has been used with a series resonant load for an induction heating system to clarify the effectiveness of using it over the conventional full-bridge inverter used for induction heating purposes. Reduced switches five-level inverter has been implemented to minimize switching losses, the number of drive circuits, and the control circuit’s complexity. A comparison has been made between the conventional induction heating system with full bridge inverter and the induction heating system with five level inverter in terms of overall efficiency and total harmonic distortion THD. MATLAB/ SIMULINK has been used for modeling and analysis. The mathematical analysis associated with simulation results shows that the proposed topology and control system performs well.

Article
Analysis of Scalability and Sensitivity for Chaotic Sine Cosine Algorithms

Dunia S. Tahir, Ramzy S. Ali

Pages: 139-154

PDF Full Text
Abstract

Chaotic Sine-Cosine Algorithms (CSCAs) are new metaheuristic optimization algorithms. However, Chaotic Sine-Cosine Algorithm (CSCAs) are able to manipulate the problems in the standard Sine-Cosine Algorithm (SCA) like, slow convergence rate and falling into local solutions. This manipulation is done by changing the random parameters in the standard Sine-Cosine Algorithm (SCA) with the chaotic sequences. To verify the ability of the Chaotic Sine-Cosine Algorithms (CSCAs) for solving problems with large scale problems. The behaviors of the Chaotic Sine-Cosine Algorithms (CSCAs) were studied under different dimensions 10, 30, 100, and 200. The results show the high quality solutions and the superiority of all Chaotic Sine-Cosine Algorithms (CSCAs) on the standard SCA algorithm for all selecting dimensions. Additionally, different initial values of the chaotic maps are used to study the sensitivity of Chaotic Sine-Cosine Algorithms (CSCAs). The sensitivity test reveals that the initial value 0.7 is the best option for all Chaotic Sine-Cosine Algorithms (CSCAs).

Article
Vehicle Remote Support and Surveillance System

Ahmed J. Abid, Ramzy S. Ali, Rafah A. Saheb

Pages: 55-63

PDF Full Text
Abstract

the proposed design offers a complete solution to support and surveillance vehicles remotely. The offered algorithm allows a monitoring center to track vehicles; diagnoses fault remotely, control the traffic and control CO emission. The system is programmed to scan the on-board diagnostic OBD periodically or based on request to check if there are any faults and read all the available sensors, then make an early fault prediction based on the sensor readings, an experience with the vehicle type and fault history. It is so useful for people who are not familiar with fault diagnosis as well as the maintenance center. The system offers tracking the vehicle remotely, which protects it against theft and warn the driver if it exceeds the speed limit according to its location. Finally, it allows the user to report any traffic congestion and allow s a vehicle navigator to be up to date with the traffic condition based on the other system’s user feedback.

Article
Comparison of New Multilevel Inverter Topology with Conventional Topologies Used for Induction Heating System

Aws H. Al-Jrew, Jawad R. Mahmood, Ramzy S. Ali

Pages: 48-57

PDF Full Text
Abstract

In this article, a comparison of innovative multilevel inverter topology with standard topologies has been conducted. The proposed single phase five level inverter topology has been used for induction heating system. This suggested design generates five voltage levels with a fewer number of power switches. This reduction in number of switches decreases the switching losses and the number of driving circuits and reduce the complexity of control circuit. It also reduces the cost and size for the filter used. Analysis and comparison has been done among the conventional topologies (neutral clamped and cascade H-bridge multilevel inverters) with the proposed inverter topology. The analysis includes the total harmonic distortion THD, efficiency and overall performance of the inverter systems. The simulation and analysis have been done using MATLAB/ SIMULINK. The results show good performance for the proposed topology in comparison with the conventional topologies.

Article
PLC/HMI Based Portable Workbench for PLC and Digital Logic Learning and Application Development

Jawad Radhi Mahmood, Ramzy Salim Ali

Pages: 83-96

PDF Full Text
Abstract

A Programmable logic controller (PLC) uses the digital logic circuits and their operating concepts in its hardware structure and its programming instructions and algorithms. Therefore, the deep understanding of these two items is staple for the development of control applications using the PLC. This target is only possible through the practical sensing of the various components or instructions of these two items and their applications. In this work, a user-friendly and re-configurable ladder, digital logic learning and application development design and testing platform has been designed and implemented using a Programmable Logic Controller (PLC), Human Machine Interface panel (HMI), four magnetic contactors, one Single-phase power line controller and one Variable Frequency Drive (VFD) unit. The PLC role is to implement the ladder and digital logic functions. The HMI role is to establish the virtual circuit wiring and also to drive and monitor the developed application in real time mode of application. The magnetic contactors are to play the role of industrial field actuators or to link the developed application control circuit to another field actuator like three phase induction motor. The Single -phase power line controller is to support an application like that of the soft starter. The VFD is to support induction motor driven applications like that of cut-to-length process in which steel coils are uncoiled and passed through cutting blade to be cut into required lengths. The proposed platform has been tested through the development of 14 application examples. The test results proved the validity of the proposed platform.

Article
Design and Implementation of RFID Active Tags and Mutual Authentication Protocol with Ownership Transfer Stage

Issam A. Hussein, Ramzy S. Ali, Basil H. Jasim

Pages: 83-103

PDF Full Text
Abstract

Radio frequency identification (RFID) technology is being used widely in the last few years. Its applications classifies into auto identification and data capturing issues. The purpose of this paper is to design and implement RFID active tags and reader using microcontroller ATmega328 and 433 MHz RF links. The paper also includes a proposed mutual authentication protocol between RFID reader and active tags with ownership transfer stage. Our protocol is a mutual authentication protocol with tag’s identifier updating mechanism. The updating mechanism has the purpose of providing forward security which is important in any authentication protocol to prevent the attackers from tracking the past transactions of the compromised tags. The proposed protocol gives the privacy and security against all famous attacks that RFID system subjected for due to the transfer of data through unsecure wireless channel, such as replay, denial of service, tracking and cloning attacks. It also ensures ownership privacy when the ownership of the tag moves to a new owner.

Article
Analysis of the determinism of time-series extracted from social and biological systems

Fortuna Luigi, Frasca Mattia, Gambuzza Lucia Valentina, Sarra Fiore Angelo, Ramzy S. Ali, Mofeed T. Rashid

Pages: 180-185

PDF Full Text
Abstract

Self-organizing systems arise in many different fields. In this work we analyze data from social and biological systems. A central question is to demonstrate the presence of the determinism in time-series extracted from such systems that appear apparently not correlated but that are two good benchmarks for the study of complexity in real systems. We will apply the Kaplan test and we will define an order parameter for the biological data to characterize the complexity of the system.

1 - 16 of 16 items

Search Parameters

Journal Logo
Iraqi Journal for Electrical and Electronic Engineering

College of Engineering, University of Basrah

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

Copyright © 2025 College of Engineering, University of Basrah. All rights reserved, including those for text and data mining, AI training, and similar technologies.