Iraqi Journal for Electrical and Electronic Engineering
Login
Iraqi Journal for Electrical and Electronic Engineering
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
    • Proofreading Service
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
  • About
    • About Journal
    • Aims and Scope
    • Editorial Team
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Abstracting and indexing
    • Announcements
    • Contact

Search Results for Ali K. Marzook

Article
Performance of Non-Orthogonal Multiple Access (NOMA) with Successive Interference Cancellation (SIC)

Ali K. Marzook, Hayder J. Mohammed, Hisham L. Swadi Roomi

Pages: 152-156

PDF Full Text
Abstract

Non-Orthogonal Multiple Access (NOMA) has been promised for fifth generation (5G) cellular wireless network that can serve multiple users at same radio resources time, frequency, and code domains with different power levels. In this paper, we present a new simulation compression between a random location of multiple users for Non-Orthogonal Multiple Access (NOMA) and Orthogonal Multiple Access (OMA) that depend on Successive Interference Cancellation (SIC) and generalized the suggested joint user pairing for NOMA and beyond cellular networks. Cell throughput and Energy Efficiency (EE) are gained are developed for all active NOMA user in suggested model. Simulation results clarify the cell throughput for NOMA gained 7 Mpbs over OMA system in two different scenarios deployed users (3 and 4). We gain an attains Energy Efficiency (EE) among the weak power users and the stronger power users.

Article
Understanding Power Gating Mechanism Based on Workload Classification of Modern Heterogeneous Many-Core Mobile Platform in the Dark Silicon Era

Haider Alrudainy, Ali K. Marzook, Muaad Hussein, Rishad Shafik

Pages: 275-283

PDF Full Text
Abstract

The rapid progress in mobile computing necessitates energy efficient solutions to support substantially diverse and complex workloads. Heterogeneous many core platforms are progressively being adopted in contemporary embedded implementations for high performance at low power cost estimations. These implementations experience diverse workloads that offer drastic opportunities to improve energy efficiency. In this paper, we propose a novel per core power gating (PCPG) approach based on workload classifications (WLC) for drastic energy cost minimization in the dark silicon era. Core of our paradigm is to use an integrated sleep mode management based on workloads classification indicated by the performance counters. A number of real applications benchmark (PARSEC) are adopted as a practical example of diverse workloads, including memory- and CPU-intensive ones. In this paper, these applications are exercised on Samsung Exynos 5422 heterogeneous many core system showing up to 37% to 110% energy efficient when compared with our most recent published work, and ondemand governor, respectively. Furthermore, we illustrate low-complexity and low-cost runtime per core power gating algorithm that consistently maximize IPS/Watt at all state space.

Article
Improving Operating Time for External Laser Source based Polymer Fiber by Optimizing Model Parameters

Hisham Kadhum Hisham, Ali Kamel Marzook

Pages: 206-213

PDF Full Text
Abstract

In this paper, an analysis of performance acceleration of an external laser source (ELS) model based polymer fiber gratings (PFGs) by reducing the turn-on delay time (TDelay) is successfully investigated numerically by optimizing model parameters. In contrast to all previous studies that relied either on approximate or experimental equations, the analysis was based on an exact numerical formula. The analysis is based on the investigation of the effect of diode injected current (Iin j), temperature (T), recombination rate coefficients (i.e. Anr, B, and C), and optical feedback (OFB) level. Results have demonstrated that by optimizing model parameters the Delay can be controlled and reduced effectively.

1 - 3 of 3 items

Search Parameters

Journal Logo
Iraqi Journal for Electrical and Electronic Engineering

College of Engineering, University of Basrah

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

Copyright © 2025 College of Engineering, University of Basrah. All rights reserved, including those for text and data mining, AI training, and similar technologies.