Page 34 - 2024-Vol20-Issue2
P. 34

30 |                                                               Bresam & Al-Mumen

[36] J. Jeong, D. Jang, and S. K. Chung, “Target drug deliv-       [46] Z. Cai, Q. Fu, S. Zhang, C. Fan, X. Zhang, J. Guo,
      ery technology (carrying, releasing, penetrating) using            and S. Guo, “Performance evaluation of a magnetically
      acoustic bubbles embedded in an electromagnetically                driven microrobot for targeted drug delivery,” Microma-
      driven microrobot,” in 2018 IEEE Micro Electro Me-                 chines, vol. 12, no. 10, p. 1210, 2021.
      chanical Systems (MEMS), (Belfast, UK), pp. 59–61,
      IEEE, 2018.                                                  [47] A. Rodriguez, R. Amador, R. Rojas, and F. Barrios,
                                                                         “Magnetic field visualisation and inductance calculation
[37] C. Yu, J. Kim, H. Choi, J. Choi, S. Jeong, K. Cha, J.-              of a simple configuration surface coil at low magnetic
      o. Park, and S. Park, “Novel electromagnetic actuation             field,” Revista mexicana de f´isica E, vol. 52, no. 1, pp. 1–
      system for three-dimensional locomotion and drilling               12, 2006.
      of intravascular microrobot,” Sensors and Actuators A:
      Physical, vol. 161, no. 1-2, pp. 297–304, 2010.              [48] S. Jeon, G. Jang, H. Choi, and S. Park, “Magnetic nav-
                                                                         igation system with gradient and uniform saddle coils
[38] S. Jeong, H. Choi, K. Cha, J. Li, J.-o. Park, and S. Park,          for the wireless manipulation of micro-robots in human
      “Enhanced locomotive and drilling microrobot using pre-            blood vessels,” IEEE transactions on magnetics, vol. 46,
      cessional and gradient magnetic field,” Sensors and Ac-            no. 6, pp. 1943–1946, 2010.
      tuators A: Physical, vol. 171, no. 2, pp. 429–435, 2011.
                                                                   [49] J. Choi, J. Hwang, J.-y. Kim, and H. Choi, “Recent
[39] S. Yuan, Y. Wan, and S. Song, “Rectmag3d: A magnetic                progress in magnetically actuated microrobots for tar-
      actuation system for steering milli/microrobots based              geted delivery of therapeutic agents,” Advanced Health-
      on rectangular electromagnetic coils,” Applied Sciences,           care Materials, vol. 10, no. 6, p. 1–24, 2021.
      vol. 10, no. 8, p. 2677, 2020.
                                                                   [50] Q. Fu, S. Guo, Y. Yamauchi, H. Hirata, and H. Ishihara,
[40] H. Choi, J. Choi, S. Jeong, C. Yu, J.-o. Park, and                  “A novel hybrid microrobot using rotational magnetic
      S. Park, “Two-dimensional locomotion of a microrobot               field for medical applications,” Biomedical microdevices,
      with a novel stationary electromagnetic actuation sys-             vol. 17, pp. 1–12, 2015.
      tem,” Smart Materials and Structures, vol. 18, no. 11,
      p. 115017, 2009.                                             [51] G. Chatzipirpiridis, O. Ergeneman, J. Pokki, F. Ullrich,
                                                                         S. Fusco, J. A. Ortega, K. M. Sivaraman, B. J. Nelson,
[41] Q. Zhang, S. Song, P. He, H. Li, H.-Y. Mi, W. Wei,                  and S. Pane´, “Electroforming of implantable tubular
      Z. Li, X. Xiong, and Y. Li, “Motion control of magnetic            magnetic microrobots for wireless ophthalmologic ap-
      microrobot using uniform magnetic field,” IEEE Access,             plications,” Advanced healthcare materials, vol. 4, no. 2,
      vol. 8, pp. 71083–71092, 2020.                                     pp. 209–214, 2015.

[42] D. Kim, J. Park, H. H. Park, and S. Ahn, “Generation          [52] J. Han, J. Zhen, V. Du Nguyen, G. Go, Y. Choi, S. Y. Ko,
      of magnetic propulsion force and torque for microrobot             J.-O. Park, and S. Park, “Hybrid-actuating macrophage-
      using wireless power transfer coil,” IEEE Transactions             based microrobots for active cancer therapy,” Scientific
      on Magnetics, vol. 51, no. 11, pp. 1–4, 2015.                      reports, vol. 6, no. 1, p. 28717, 2016.

[43] P. Ryan and E. Diller, “Magnetic actuation for full dexter-   [53] S. Li, D. Liu, Y. Hu, Z. Su, X. Zhang, R. Guo, D. Li, and
      ity microrobotic control using rotating permanent mag-             Y. Lu, “Soft magnetic microrobot doped with porous
      nets,” IEEE Transactions on Robotics, vol. 33, no. 6,              silica for stability-enhanced multimodal locomotion in a
      pp. 1398–1409, 2017.                                               nonideal environment,” ACS Applied Materials & Inter-
                                                                         faces, vol. 14, no. 8, pp. 10856–10874, 2022.
[44] Z. Wu, Z. Xu, and Q. Xu, “Design and optimization of a
      new alternating electromagnetic-field-generation system      [54] S. Palagi, D. P. Singh, and P. Fischer, “Light-controlled
      for an inverted microscope,” Micromachines, vol. 13,               micromotors and soft microrobots,” Advanced Optical
      no. 4, p. 542, 2022.                                               Materials, vol. 7, no. 16, p. 1–18, 2019.

[45] H. Lee, D. Lee, and S. Jeon, “A two-dimensional manip-        [55] D.-D. Han, Y.-L. Zhang, J.-N. Ma, Y.-Q. Liu, B. Han,
      ulation method for a magnetic microrobot with a large              and H.-B. Sun, “Light-mediated manufacture and ma-
      region of interest using a triad of electromagnetic coils,”        nipulation of actuators,” Advanced Materials, vol. 28,
      Micromachines, vol. 13, no. 3, p. 416, 2022.                       no. 38, pp. 8328–8343, 2016.
   29   30   31   32   33   34   35   36   37   38   39