Page 33 - 2024-Vol20-Issue2
P. 33

29 |                                                             Bresam & Al-Mumen

[16] S. Park and J.-O. Park, “Frontier research program on       [26] K. E. Peyer, L. Zhang, and B. J. Nelson, “Bio-inspired
      biomedical microrobot for intravascular therapy,” in             magnetic swimming microrobots for biomedical appli-
      2008 2nd IEEE RAS & EMBS International Conference                cations,” Nanoscale, vol. 5, no. 4, pp. 1259–1272, 2013.
      on Biomedical Robotics and Biomechatronics, (Scotts-
      dale, AZ, USA), pp. 360–365, IEEE, 2008.                   [27] H. Choi, S. Jeong, G. Go, C. Lee, J. Zhen, S. Y. Ko,
                                                                       J.-O. Park, and S. Park, “Equitranslational and axially
[17] E. A. R. Hussein, A. S. Hassooni, and H. Al-Libawy,               rotational microrobot using electromagnetic actuation
      “Detection of electrocardiogram qrs complex based on             system,” International Journal of Control, Automation
      modified adaptive threshold,” International Journal of           and Systems, vol. 15, pp. 1342–1350, 2017.
      Electrical and Computer Engineering (IJECE), vol. 9,
      no. 5, pp. 3512–3521, 2019.                                [28] A. W. Mahoney, N. D. Nelson, K. E. Peyer, B. J. Nelson,
                                                                       and J. J. Abbott, “Behavior of rotating magnetic micro-
[18] X.-Z. Chen, M. Hoop, F. Mushtaq, E. Siringil, C. Hu,              robots above the step-out frequency with application to
      B. J. Nelson, and S. Pane´, “Recent developments in mag-         control of multi-microrobot systems,” Applied Physics
      netically driven micro-and nanorobots,” Applied Materi-          Letters, vol. 104, no. 14, p. 1–4, 2014.
      als Today, vol. 9, pp. 37–48, 2017.
                                                                 [29] A. Ghanbari, P. H. Chang, B. J. Nelson, and H. Choi,
[19] D. Dong, W. S. Lam, and D. Sun, “Electromagnetic                  “Magnetic actuation of a cylindrical microrobot us-
      actuation of microrobots in a simulated vascular struc-          ing time-delay-estimation closed-loop control: model-
      ture with a position estimator based motion controller,”         ing and experiments,” Smart materials and structures,
      IEEE Robotics and Automation Letters, vol. 5, no. 4,             vol. 23, no. 3, p. 035013, 2014.
      pp. 6255–6261, 2020.
                                                                 [30] C. Pawashe, S. Floyd, and M. Sitti, “Multiple magnetic
[20] L. Wang, Z. Meng, Y. Chen, and Y. Zheng, “Engineering             microrobot control using electrostatic anchoring,” Ap-
      magnetic micro/nanorobots for versatile biomedical ap-           plied Physics Letters, vol. 94, no. 16, p. 164108, 2009.
      plications,” Advanced Intelligent Systems, vol. 3, no. 7,
      p. 2000267, 2021.                                          [31] H. Xie, M. Sun, X. Fan, Z. Lin, W. Chen, L. Wang,
                                                                       L. Dong, and Q. He, “Reconfigurable magnetic mi-
[21] R. L. Truby and S. Li, “Integrating chemical fuels and            crorobot swarm: Multimode transformation, locomo-
      artificial muscles for untethered microrobots,” Science          tion, and manipulation,” Science robotics, vol. 4, no. 28,
      Robotics, vol. 5, no. 45, pp. 1–3, 2020.                         p. 1–15, 2019.

[22] J. Liu, S. Yu, B. Xu, Z. Tian, H. Zhang, K. Liu,            [32] M. P. Kummer, J. J. Abbott, B. E. Kratochvil, R. Borer,
      X. Shi, Z. Zhao, C. Liu, X. Lin, et al., “Magnet-                A. Sengul, and B. J. Nelson, “Octomag: An electro-
      ically propelled soft microrobot navigating through              magnetic system for 5-dof wireless micromanipulation,”
      constricted microchannels,” Applied Materials Today,             IEEE Transactions on Robotics, vol. 26, no. 6, pp. 1006–
      vol. 25, p. 101237, 2021.                                        1017, 2010.

[23] L. Yang and L. Zhang, “Motion control in magnetic           [33] B. Djamel, H. Houassine, N. Kabache, and M. Djeloul,
      microrobotics: From individual and multiple robots to            “Electromagnetic nonlinear parametric study of the
      swarms,” Annual Review of Control, Robotics, and Au-             synrm using FEM method,” Indonesian Journal of Elec-
      tonomous Systems, vol. 4, pp. 509–534, 2021.                     trical Engineering and Computer Science, vol. 24, no. 2,
                                                                       p. 637–648, 2021.
[24] T. Yamanaka and F. Arai, “Self-propelled swimming
      microrobot using electroosmotic propulsion and biofuel     [34] M. C. Hoang, V. H. Le, J. Kim, E. Choi, B. Kang, J.-O.
      cell,” IEEE Robotics and Automation Letters, vol. 3,             Park, and C.-S. Kim, “Untethered robotic motion and
      no. 3, pp. 1787–1792, 2018.                                      rotating blade mechanism for actively locomotive biopsy
                                                                       capsule endoscope,” IEEE Access, vol. 7, pp. 93364–
                                                                       93374, 2019.

[25] N. Ebrahimi, C. Bi, D. J. Cappelleri, G. Ciuti, A. T.       [35] S. Jeong, H. Choi, J. Choi, C. Yu, J.-o. Park, and S. Park,
      Conn, D. Faivre, N. Habibi, A. Hos?ovsky`, V. Iacov-             “Novel electromagnetic actuation (ema) method for 3-
      acci, I. S. Khalil, et al., “Magnetic actuation methods          dimensional locomotion of intravascular microrobot,”
      in bio/soft robotics,” Advanced Functional Materials,            Sensors and Actuators A: Physical, vol. 157, no. 1,
      vol. 31, no. 11, p. 1–40, 2021.                                  pp. 118–125, 2010.
   28   29   30   31   32   33   34   35   36   37   38