Page 194 - 2023-Vol19-Issue2
P. 194

190 |                                                            Gaid & Ali

“Millimeter wave mobile communications for 5g cellular:          International Conference of Reliable Information and
It will work!,” IEEE Access, vol. 1, pp. 335–349, 2013.          Communication Technology, pp. 717–727, Springer.

[14] H. Wei, Z. H. Jiang, C. Yu, D. Hou, H. Wang, C. Guo,        [23] C. L. Bamy, F. M. Mbango, D. B. O. Konditi, and P. M.
      Y. Hu, and et al, “The role of millimeter-wave technolo-         Mpele, “A compact dual-band dolly-shaped antenna with
      gies in 5g/6g wireless communications,” IEEE Journal             parasitic elements for automotive radar and 5g applica-
      of Microwaves, vol. 1, no. 1, pp. 101–122, 2021.                 tions,” Heliyon, vol. 7, no. 4, 2021.

[15] W. Xiong, L. Kong, F. Kong, F. Qiu, M. Xia, S. Arnon,       [24] U. Singh and R. Mishra, “A dual-band high-gain sub-
      and G. Chen, “Millimeter wave communication: A com-              strate integrated waveguide slot antenna for 5g appli-
      prehensive survey,” IEEE Communications Surveys &                cations,” Progress In Electromagnetics Research C,
      Tutorials, vol. 20, no. 3, pp. 1616–1653, 2018.                  vol. 119, pp. 191–200, 2022.

[16] L. C. Paul, S. C. Das, N. Sarker, M. F. Ishraque, R. Azim,  [25] D. G. Patanvariya and A. Chatterjee, “A compact bow-tie
      and M. Z. Mahmud, “A low profile microstrip patch                shapedwide-band microstrip patch antenna for future 5g
      antenna with dgs for 5g application,” in In 2021 Inter-          communication networks,” Radioengineering, vol. 30,
      national Conference on Science & Contemporary Tech-              no. 1, pp. 40–47, 2021.
      nologies (ICSCT), pp. 1–5, IEEE.
                                                                 [26] M. Ur-Rehman, M. Adekanye, and H. T. Chattha, “Tri-
[17] M. Hussain, E. M. Ali, S. M. R. Jarchavi, A. Zaidi, A. I.         band millimeter-wave antenna for body-centric net-
      Najam, A. A. Alotaibi, A. Althobaiti, and S. S. Ghoneim,         works,” Nano Communication Networks, vol. 18, pp. 72–
      “Design and characterization of compact broadband an-            81, 2018.
      tenna and its mimo configuration for 28 ghz 5g applica-
      tions,” Electronics, vol. 11, no. 4, p. 523, 2022.         [27] F. Alnemr, M. F. Ahmed, and A. A. Shaalan, “A com-
                                                                       pact 28/38 ghz mimo circularly polarized antenna for
[18] O. Y. Saeed, A. A. Saeed, A. S. Gaid, A. M. Aoun,                 5 g applications,” Journal of Infrared, Millimeter, and
      and A. A. Sallam, “Multiband microstrip patch antenna            Terahertz Waves, vol. 42, pp. 338–355, 2021.
      operating at five distinct 5g mm-wave bands,” in In 2021
      International Conference of Technology, Science and        [28] M. M. Khan, K. Islam, M. N. A. Shovon, M. Baz, and
      Administration (ICTSA), pp. 1–5, IEEE.                           M. Masud, “Design of a novel 60 ghz millimeter wave q-
                                                                       slot antenna for body-centric communications,” Interna-
[19] A. S. Mohammed, S. Kamal, M. B. Ain, Z. A. Ahmad,                 tional Journal of Antennas and Propagation, vol. 2021,
      Z. Zahar, and R. Hussin, “Improving the gain perfor-             pp. 1–12, 2021.
      mance of 2× 2 u-slot air substrate patch antenna array
      operated at 28 ghz wideband resonance for 5g applica-      [29] M. Nahas, “A super high gain l-slotted microstrip patch
      tion,” in In IOP Conference Series: Materials Science            antenna for 5g mobile systems operating at 26 and 28
      and Engineering, vol. 917, IOP.                                  ghz,” Engineering, Technology & Applied Science Re-
                                                                       search, vol. 12, pp. 8053–8057, 2022.
[20] A. S. Gaid, A. M. Alhakimi, O. Y. Sae’ed, M. S.
      Alasadee, and A. A. Ali, “Compact and bandwidth ef-        [30] A. E. Farahat and K. F. Hussein, “Dual-band (28/38 ghz)
      ficient multi-band microstrip patch antennas for 5g ap-          wideband mimo antenna for 5g mobile applications,”
      plications,” in In International Conference of Reliable          IEEE Access, vol. 10, pp. 32213–32223, 2022.
      Information and Communication Technology, pp. 663–
      672, Springer.                                             [31] K. Raheel, A. Altaf, A. Waheed, S. H. Kiani, D. A.
                                                                       Sehrai, F. Tubbal, and R. Raad, “E-shaped h-slotted dual
[21] A. S. Gaid, O. A. Qaid, M. A. Ameer, F. F. Qaid, and              band mm-wave antenna for 5g technology,” Electronics,
      B. S. Ahmed, “Small and bandwidth efficient multi-band           vol. 10, no. 9, p. 1019, 2021.
      microstrip patch antennas for future 5g communications,”
      in In International Conference of Reliable Information     [32] Z. N. Alhaj, A. Saif, and A. S. Gaid, “A rectangular
      and Communication Technology, pp. 653–662, Springer.             microstrip patch antenna loaded with two identical e-
                                                                       shaped slits for 60 ghz band applications,” in In 2022
[22] A. S. Gaid, M. H. Qasem, A. A. Sallam, and E. Q.                  2nd International Conference on Emerging Smart Tech-
      Shayea, “Dual-band rectangular microstrip patch an-              nologies and Applications (eSmarTA), pp. 1–6, IEEE.
      tenna with csrr for 28/38 ghz bands applications,” in In
   189   190   191   192   193   194   195   196