Page 114 - IJEEE-2023-Vol19-ISSUE-1
P. 114

110 |                                                                                                         Abed, Wali, & Alaziz

  particles,” Powder Technol., vol. 239, pp. 12–20, May            decision tree and fuzzy classifier,” Int. J. Adv. Manuf.
  2013. doi: 10.1016/J.POWTEC.2013.01.052.                         Technol. 2016 899, vol. 89, no. 9, pp. 3487–3494, Aug.
[17] M. D. Mikhailov and A. P. S. Freire, “The drag                2016. doi: 10.1007/S00170-016-9307-8.
  coefficient of a sphere: An approximation using Shanks         [30] V. N. Vapnik, “The Nature of Statistical Learning
  transform,” Powder Technol., vol. 237, pp. 432–435, Mar.         Theory,” Nat. Stat. Learn. Theory, 2000. doi:
  2013. doi: 10.1016/J.POWTEC.2012.12.033.                         10.1007/978-1-4757-3264-1.
[18] N. S. Cheng, “Comparison of formulas for drag               [31] V. Franc and V. Hlavác, “Vector machine multi-class
  coefficient and settling velocity of spherical particles,”       support,” Proc. - Int. Conf. Pattern Recognit., vol. 2, pp.
  Powder Technol., vol. 189, no. 3, pp. 395–398, Feb. 2009.        236–239, 2002. doi: 10.1109/ICPR.2002.1048282.
  doi: 10.1016/J.POWTEC.2008.07.006.                             [32] Karim Egab et al., “ Study the Effect of Heat Transfer
[19] R. Barati, S. A. A. S. Neyshabouri, and G. Ahmadi,            Coefficient and Thermal Conductivity on Cracked Pipes
  “Development of empirical models with high accuracy for          Carrying Pressurized Fluid,” Int. J. Eng. Technol. , vol. 8,
  estimation of drag coefficient of flow around a smooth           no. 2019, pp. 275–282, 2019.
  sphere: An evolutionary approach,” Powder Technol., vol.       [33] M. Ghasemi, M. Zarei, A. Foroutannia, and S. Jafari,
  257, pp. 11–19, May 2014. doi:                                   “Study of functional connectivity of central motor system
  10.1016/J.POWTEC.2014.02.045.                                    in Parkinson’s disease using copula theory,” Biomed.
[20] A. B. Figueiredo, R. M. Baptista, F. B. de F. Rachid,         Signal Process. Control, vol. 65, no. November 2020, pp.
  and G. C. R. Bodstein, “A straightforward strategy for leak      102320, 2021. doi: 10.1016/j.bspc.2020.102320.
  localization in two-phase gas pipelines,” J. Nat. Gas Sci.
  Eng., vol. 94, Oct. 2021. doi:
  10.1016/j.jngse.2021.104061.
[21] J. V. N. de Sousa, C. H. Sodré, A. G. B. de Lima, and S.
  R. de F. Neto, “Numerical Analysis of Heavy Oil-Water
  Flow and Leak Detection in Vertical Pipeline,” Adv. Chem.
  Eng. Sci., vol. 03, no. 01, pp. 9–15, 2013. doi:
  10.4236/aces.2013.31002.
[22] M. De Vasconcellos Araújo, S. R. De Farias Neto, A.
  G. B. De Lima, and F. Daylane Tavares De Luna,
  “Hydrodynamic study of oil leakage in pipeline via CFD,”
  Adv. Mech. Eng., vol. 2014, 2014. doi:
  10.1155/2014/170178.
[23] O. Akinsete and A. Oshingbesan, “Leak detection in
  natural gas pipelines using intelligent models,” Soc. Pet.
  Eng. - SPE Niger. Annu. Int. Conf. Exhib. 2019. NAIC
  2019, no. April, 2019, doi: 10.2118/198738-MS.
[24] R. R. Sharma, “Gas Leakage Detection in Pipeline by
  SVM classifier with Automatic Eddy Current based Defect
  Recognition Method,” J. Ubiquitous Comput. Commun.
  Technol., vol. 3, no. 3, pp. 196–212, 2021. doi:
  10.36548/jucct.2021.3.004.
[25] Y. Shen and W. Cheng, “A Tree-Based Machine
  Learning Method for Pipeline Leakage Detection,” Water
  (Switzerland), vol. 14, no. 18, 2022. doi:
  10.3390/w14182833.
[26] H. Salim, M. Alaziz, and T. Abdalla, “Human Activity
  Recognition Using The Human Skeleton Provided by
  Kinect,” Iraqi J. Electr. Electron. Eng., vol. 17, no. 2, pp.
  183–189, 2021. doi: 10.37917/ijeee.17.2.20.
[27] N. Mashhadi, I. Shahrour, N. Attoue, J. El Khattabi, and
  A. Aljer, “Use of machine learning for leak detection and
  localization in water distribution systems,” Smart Cities,
  vol. 4, no. 4, pp. 1293–1315, 2021. doi:
  10.3390/smartcities4040069.
[28] J. Kemba, K. Gideon, and C. N. Nyirenda, “Leakage
  detection in Tsumeb east water distribution network using
  EPANET and support vector regression,” 2017 IST-Africa
  Week Conf. IST-Africa 2017, Nov. 2017. doi:
  10.23919/ISTAFRICA.2017.8102401.
[29] A. Krishnakumari, A. Elayaperumal, M. Saravanan,
  and C. Arvindan, “Fault diagnostics of spur gear using
   109   110   111   112   113   114   115   116   117   118   119