This paper presents a new design to obtain wide dual-band operation from a coplanar probe feed antenna loaded with two shorted walls. The lower band of proposed antenna has a 10 dB bandwidth of 611 MHz (24.18%) around the center frequency 2527MHz, and the upper band has a bandwidth of 1255 MHz (27.88%) around the center frequency 4501MHz. The obtained bandwidths cover WLANs operations on all bands. The bandwidth of the first operating frequency covers ISM band (2400- 2483.5) MHz, which is required by IEEE 802.11b, g and Bluetooth standards, and the bandwidth of the second operating frequency covers U-NII1 (5150-5350) MHz band, which is required by IEEE 802.11a and HiperLAN2 standards, and also covers U-NII2 (5470-5725) MHz and U-NII3/ISM (5725-5825) MHz bands, which are required by IEEE 802.11a standard. A three dimensional finite-difference time-domain (3-D FDTD) method is employed to analyze the proposed structure and find its performance. The simulated results are compared with the experimental results.
The continuous growing developments in the traffic of mobile data limits the data throughput and capacity of cellular networks. “Heterogeneous Networks (HetNets)” are efficient solution to realize such demands. However, in HetNets, the congestion on the overloaded cellular network can be increased when the traffic of data is pushed from a cellular network to the Wi-Fi. In practice, offloading the cellular data traffic to a Wireless Local Area Network (WLAN) depending on the signal quality is a broadly deployed method to solve such problem. The use of Device to Device (D2D) communication further enhances the traffic offloading in WLAN systems and helps to obtain better throughput, end-to-end delay and network load. However, the critical offloading potential and its impacts on the whole performance is not totally understood. In this paper, the offloading of Long Term Evolution (LTE) traffic is presented using a WLAN for voice and video applications. A comparison is performed among two WLAN mecha- nisms; Distributed coordination function (DCF) and Point Coordination Function (PCF). As well, the effect of add- ing a D2D technology to the PCF is discussed. The WLAN effectively offloaded nodes at their Signal to Interference and Noise Ratio (SINR) becomes more than a specific threshold. Results presented that the PCF mechanism outper- forms the DCF one in terms of packet loss ratio, throughput and the maximum load of the entire network. In addi- tion, the use of a D2D serviced in the PCF helps in further reduction in the network load.
This paper presents new device to simulate and inject a 4-20 mA current signal to PLC and control on this signal wirelessly. The proposed simulator device has been designed and implemented by a PIC 18f4520 microcontroller and an Ethernet click. This device is connected to Wireless Local Area Network (WLAN) via Wi-Fi router using TCP/IP protocol. The simulator has two channels for 4-20 mA current output signals with two channels for digital output signals, controlled by a laptop or a smart mobile. The purpose of this work is to demonstrate the usefulness of the Wi-Fi wireless technology for remote controlling on the 4-20 mA output current signal and the digital output signal in the designed simulator device. The experiments indicate that the proposed wireless simulator outputs the 4- 20 mA current with high accuracy and very fast response. The experiments also indicate that the proposed wireless simulator is easy, comfortable and convenient practically to use in the test operations of protections, interlocks and integrity of analog input channels for PLC compared to the wired simulator.