According to the characteristic of HVS (Human Visual System) and the association memory ability of neural network, an adaptive image watermarking algorithm based on neural network is proposed invisible image watermarking is secret embedding scheme for hiding of secret image into cover image file and the purpose of invisible watermarking is copyrights protection. Wavelet transformation-based image watermarking techniques provide better robustness for statistical attacks in comparison to Discrete Cosine Transform domain-based image watermarking. The joined method of IWT (Integer Wavelet Transform) and DCT (Discrete Cosine Transform) gives benefits of the two procedures. The IWT have impediment of portion misfortune in embedding which increments mean square estimate as SIM and results diminishing PSNR. The capacity of drawing in is improved by pretreatment and re-treatment of image scrambling and Hopfield neural network. The proposed algorithm presents hybrid integer wavelet transform and discrete cosine transform based watermarking technique to obtain increased imperceptibility and robustness compared to IWT-DCT based watermarking technique. The proposed watermarking technique reduces the fractional loss compared to DWT based watermarking.
Due to their vital applications in many real-world situations, researchers are still presenting bunches of methods for better analysis of motor imagery (MI) electroencephalograph (EEG) signals. However, in general, EEG signals are complex because of their nonstationary and high-dimensionality properties. Therefore, high consideration needs to be taken in both feature extraction and classification. In this paper, several hybrid classification models are built and their performance is compared. Three famous wavelet mother functions are used for generating scalograms from the raw signals. The scalograms are used for transfer learning of the well-known VGG-16 deep network. Then, one of six classifiers is used to determine the class of the input signal. The performance of different combinations of mother functions and classifiers are compared on two MI EEG datasets. Several evaluation metrics show that a model of VGG-16 feature extractor with a neural network classifier using the Amor mother wavelet function has outperformed the results of state-of-the-art studies.