The paper dells with a modified experimental prototype for pulse-width modulation (PWM) sliding mode control (SMC) applied to a DC-to-DC-boost converter operated in continuous conduction mode (CCM). Experimental results show that the proposed control schme provides good voltage regulation and is suitable for common DC-to-DC conversion purposes. The prototype and its implementation are given in detail. The static and dynamic performances of the The static and dynamic performances of the experimental system are recorded. Experimental results show that the proposed control scheme provides good voltage regulation and is suitable for common DC-to-DC conversion purposes.
Network reconfiguration in distribution system is realized by changing the status of sectionalizing switches, and is usually done for the purpose of loss reduction. Loss reduction can result in substantial benefits for a utility. Other benefits from loss reduction include increased system capacity, and possible deferment or elimination of capital expenditures for system improvements and expansion. There is also improved voltage regulation as a result of reducing feeder voltage drop. Research work included by this paper focuses on using branch exchange method to minimize losses and solve the problems over different radial configuration. Solution’s algorithm for loss minimization has been developed based on two stages of solution methodology. The first stage determines maximum loss-reduction loop by comparing the size of circles for every loop. In a distribution system, a loop is associated by a tie-line and hence there are several loops in the system. To obtain the maximum loss- reduction loop, size of modified zero loss-change circles are compared, and the loop within the largest circle is identified for maximum loss-reduction. The second stage determines the switching operation to be executed in that loop to reach a minimum loss network configuration by comparing the size of the loop circle for each branch-exchange. The smallest circle is to be identified for the best solution; the size of the loop circle is reduced when the losses are minimized. The performance of the proposed branch exchange method is tested on 16-bus distribution systems.
In this paper, a fuzzy based controller for boost type AC/DC converter has been presented. Its operation and performance have been investigated through its simulation in the environment of Mat Lab. The system has been tested under various loading conditions. The obtained results showed that this fuzzy based controller can effectively control the power factor and the harmonic contents of the current drawn from the power factor system distribution network.
Development of distribution systems result in higher system losses and poor voltage regulation. Consequently, an efficient and effective distribution system has become more urgent and important. Hence proper selection of conductors in the distribution system is important as it determines the current density and the resistance of the line. This paper examines the use of different evolutionary algorithms, genetic algorithm (GA), to optimal branch conductor selection in planning radial distribution systems with the objective to minimize the overall cost of annual energy losses and depreciation on the cost of conductors and reliability in order to improve productivity. Furthermore, The Backward-Forward sweep iterative method was adopted to solve the radial load flow analysis. Simulations are carried out on 69-bus radial distribution network using GA approach in order to show the accuracy as well as the efficiency of the proposed solution technique.