Iraqi Journal for Electrical and Electronic Engineering
Login
Iraqi Journal for Electrical and Electronic Engineering
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
    • Proofreading Service
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
  • About
    • About Journal
    • Aims and Scope
    • Editorial Team
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Abstracting and indexing
    • Announcements
    • Contact

Search Results for verification

Article
Handwritten Signature Verification Method Using Convolutional Neural Network

Wijdan Yassen A. AlKarem, Eman Thabet Khalid, Khawla. H. Ali

Pages: 77-84

PDF Full Text
Abstract

Automatic signature verification methods play a significant role in providing a secure and authenticated handwritten signature in many applications, to prevent forgery problems, specifically institutions of finance, and transections of legal papers, etc. There are two types of handwritten signature verification methods: online verification (dynamic) and offline verification (static) methods. Besides, signature verification approaches can be categorized into two styles: writer dependent (WD), and writer independent (WI) styles. Offline signature verification methods demands a high representation features for the signature image. However, lots of studies have been proposed for WI offline signature verification. Yet, there is necessity to improve the overall accuracy measurements. Therefore, a proved solution in this paper is depended on deep learning via convolutional neural network (CNN) for signature verification and optimize the overall accuracy measurements. The introduced model is trained on English signature dataset. For model evaluation, the deployed model is utilized to make predictions on new data of Arabic signature dataset to classify whether the signature is real or forged. The overall obtained accuracy is 95.36% based on validation dataset.

Article
An Efficient Mechanism to Prevent the Phishing Attacks

Mustafa H. Alzuwaini, Ali A. Yassin

Pages: 125-135

PDF Full Text
Abstract

In the era of modern trends such as cloud computing, social media applications, emails, mobile applications, and URLs that lead to increased risks for defrauding authorized users, and then the attackers try to gain illegal access to accounts of users through a malicious attack. The phishing attack is one of the dangerous attacks caused to access of authorized account illegally way. The finances, business, banking, and other sensitive in states are faces by this type of attacks due to the important information they have. In this paper, we propose a secure verification scheme that can overcome the above-mentioned issues. Additionally, the proposed scheme can resist famous cyberattacks such as impersonate attacks, MITM attacks. Moreover, the proposed scheme has security features like strong verification, forward secrecy, user’s identity anomaly. The security analysis and the experimental results proved the strongest of the proposed scheme compared with other related works. Finally, our proposed scheme balanced between the performance and the security merits.

Article
A Dataset for Kinship Estimation from Image of Hand Using Machine Learning

Sarah Ibrahim Fathi, Mazin H. Aziz

Pages: 127-136

PDF Full Text
Abstract

Kinship (Familial relationships) detection is crucial in many fields and has applications in biometric security, adoption, forensic investigations, and more. It is also essential during wars and natural disasters like earthquakes since it may aid in reunion, missing person searches, establishing emergency contacts, and providing psychological support. The most common method of determining kinship is DNA analysis which is highly accurate. Another approach, which is noninvasive, uses facial photos with computer vision and machine learning algorithms for kinship estimation. Each part of the Human -body has its own embedded information that can be extracted and adopted for identification, verification, or classification of that person. Kinship recognition is based on finding traits that are shared by every family. We investigate the use of hand geometry for kinship detection, which is a new approach. Because of the available hand image Datasets do not contain kinship ground truth; therefore, we created our own dataset. This paper describes the tools, methodology, and details of the collected MKH, which stands for the Mosul Kinship Hand, images dataset. The images of MKH dataset were collected using a mobile phone camera with a suitable setup and consisted of 648 images for 81 individuals from 14 families (8 hand situations per person). This paper also presents the use of this dataset in kinship prediction using machine learning. Google MdiaPipe was used for hand detection, segmentation, and geometrical key points finding. Handcraft feature extraction was used to extract 43 distinctive geometrical features from each image. A neural network classifier was designed and trained to predict kinship, yielding about 93% prediction accuracy. The results of this novel approach demonstrated that the hand possesses biometric characteristics that may be used to establish kinship, and that the suggested method is a promising way as a kinship indicator.

Article
A Biometric System for Iris Recognition Based on Fourier Descriptors and Principle Component Analysis

Muthana H. Hamd, Samah K. Ahmed

Pages: 180-187

PDF Full Text
Abstract

Iris pattern is one of the most important biological traits of humans. In last years, the iris pattern is used for human verification because of uniqueness of its texture. In this paper, biometric system based iris recognition is designed and implemented using two comparative approaches. The first approach is the Fourier descriptors, in this method the iris features have been extracted in frequency domain, where the low spectrums define the general description of iris pattern, while the high spectrums describes the fine detail. The second approach, the principle component analysis uses statistic technique to select the most important feature values by reducing its dimensionality. The biometric system is tested by applying one-to-one pattern matching procedure for 50 persons. The distance measurement method is applied for Manhattan, Euclidean, and Cosine classifiers for purpose of comparison. In all three classification methods, Fourier descriptors were always advanced principle component analysis in matching results. It satisfied 96%, 94%, and 86% correct matching against 94%, 92%, and 80% for principle component analysis using Manhattan, Euclidean, and Cosine classifiers respectively.

Article
Off-line Signature Recognition Using Weightless Neural Network and Feature Extraction

Ali Al-Saegh

Pages: 124-131

PDF Full Text
Abstract

The problem of automatic signature recognition and verification has been extensively investigated due to the vitality of this field of research. Handwritten signatures are broadly used in daily life as a secure way for personal identification. In this paper a novel approach is proposed for handwritten signature recognition in an off-line environment based on Weightless Neural Network (WNN) and feature extraction. This type of neural networks (NN) is characterized by its simplicity in design and implementation. Whereas no weights, transfer functions and multipliers are required. Implementing the WNN needs only Random Access Memory (RAM) slices. Moreover, the whole process of training can be accomplished with few numbers of training samples and by presenting them once to the neural network. Employing the proposed approach in signature recognition area yields promising results with rates of 99.67% and 99.55% for recognition of signatures that the network has trained on and rejection of signatures that the network has not trained on, respectively.

Article
An Efficient EHR Secure Exchange Among Healthcare Servers Using Light Weight Scheme

Aqeel Adel Yaseen, Kalyani Patel, Abdulla J. Aldarwish, Ali A. Yassin

Pages: 69-82

PDF Full Text
Abstract

This work addresses the critical need for secure and patient-controlled Electronic Health Records (EHR) migration among healthcare hospitals’ cloud servers (HHS). The relevant approaches often lack robust access control and leave data vulnerable during transfer. Our proposed scheme empowers patients to delegate EHR migration to a trusted Third-Party Hospital (TTPH); which is the Certification Authority (CA) while enforcing access control. The system leverages asymmetric encryption utilizing the Elliptic Curve Digital Signature Algorithm (ECDSA), EEC and ECDSA added robust security and lightness EHR sharing. Patient and user privacy is managed due to anonymity through cryptographic hashing for data protection and utilizes mutual authentication for secure communication. Formal security analysis using the Scyther tool and informal analysis was conducted to validate the system’s robustness. The proposed scheme achieved EHR integrity due to the verification of the communicated HHS and ensuring the integrity of the HHS digital certificate during EHR migration. Ultimately, the result achieved in the proposed work demonstrated the scheme’s high balance between data security and accuracy of communication, where the best result obtained represented 7.7/ ms as computational cost and 1248 /bits as communication cost compared with the relevant approaches.

1 - 6 of 6 items

Search Parameters

Journal Logo
Iraqi Journal for Electrical and Electronic Engineering

College of Engineering, University of Basrah

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

Copyright © 2025 College of Engineering, University of Basrah. All rights reserved, including those for text and data mining, AI training, and similar technologies.