Iraqi Journal for Electrical and Electronic Engineering
Login
Iraqi Journal for Electrical and Electronic Engineering
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
    • Proofreading Service
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
  • About
    • About Journal
    • Aims and Scope
    • Editorial Team
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Abstracting and indexing
    • Announcements
    • Contact

Search Results for uwb

Article
A Study on the Effect of UWB Interference on Downlink UMTS System

Maan A. S. Al-Adwany, Esra’a H. Najim, Ala’a B. Ali, Amina M. Younis

Pages: 107-110

PDF Full Text
Abstract

In this paper, we evaluate the performance of UMTS (Universal Mobile Telecommunication System) downlink system in vicinity of UWB system. The study is achieved via simulating a scenario of a building which is located within UMTS cell borders and utilizes from both UMTS and UWB appliances. The simulation results show that the UMTS system is considerably affected by the UWB interference. However, in order to battle this interference and achieve reasonable BER (Bit Error Rate) of 10 -4 , we found that it is very necessary to carefully raise the UMTS base station transmitted power against that of UWB interferer. So, the minimum requirements for UMTS system to overcome UWB interference are stated in this work.

Article
Performance Evaluation of Downlink WiMAX System in Vicinity of UWB System

Maan A. S. Al-Adwany

Pages: 120-124

PDF Full Text
Abstract

In this paper, we evaluate the performance of WiMAX downlink system in vicinity of UWB system. The study is achieved via simulating a scenario of an office building which utilizes from both WiMAX and UWB appliances. From the simulation results, we found that WiMAX system is largely affected by the UWB interference. However, in order to overcome the interference problem and achieve reasonable BER (Bit Error Rate) of 10 -4 , we found that it is very necessary to raise the WiMAX transmitted power in relative to that of UWB interferer. So, the minimum requirements for WiMAX system to overcome UWB interference are stated here in this work.

Article
Design and Simulation of Butterfly-Shaped Filtenna with Dual Band Notch for Portable UWB Applications

Fatimah K. Juma'a, Falih M. Alnahwi

Pages: 100-106

PDF Full Text
Abstract

A compact and low cost butterfly shaped UWB filtenna with a pair of parasitic elements and a pair of slits is proposed in this work. The filtenna is supposed to be designed on a common and low-cost FR4 substrate with overall dimensions of 26mm*20mm*1.6mm .By inserting a pair of g /2( where g is waveguide wavelength ) D-shaped parasitic elements around the antenna feed line, the radiation of the 5 GHz WLAN applications is canceled to eliminated the interference . Furthermore, the rejection of the X-band satellite downlink is achieved by engraving a pair of g /4 J-shaped slits on the ground plane. The simulation results exhibits the perfect coverage of the proposed filtenna for the UWB frequency band as well as the elimination of the undesired radiation within the filtenna operating band.

Article
Ultra-Wide Band Printed Microstrip Patch Antenna with Two Band Rejection Feature Asmaa H. Majeed College of Information Engineering, Al-Nahrain University, Baghdad, Iraq Correspondence

Asmaa H. Majeed

Pages: 259-265

PDF Full Text
Abstract

This work presents a new design idea for a UWB printed micro strip patch antenna with two band-rejection features. The patch has an elliptical shape and its feeding using micro strip feeding line. To achieve the UWB, an elliptical slot was etched on a ground plane. The rejection of two-band is achieved with the addition of two different slots on the radiating patch, the first slot is inverted U shaped slot and the other is U-shaped slot, so there is no need for antenna’s additional size. The radiation pattern of the suggested antenna has an omnidirectional shape for the frequency band from 3.168 GHz to over 15 GHz. There is a two rejection bands, the first one covering 4.87−5.79 GHz with a center frequency of 5.42 GHz, and the other covering 7.2−8.45 GHz with a center frequency of 7.8 GHz. The chosen substrate for the current work is FR-4 having permittivity of 4.3 and thickness of 1.43 mm and the suggested antenna has a small size of 24.5×24.5mm2. The Experimental results of the manufactured antenna showed agreement with those results of the simulated one.

Article
New Design of a Compact 1×2 Super UWB-MIMO Antenna for Polarization Diversity

Watheq A. Neamah, Haider M. Al Sabbagh, Hussain Al-Rizzo

Pages: 111-118

PDF Full Text
Abstract

This paper proposes a new design of compact coplanar waveguide (CPW) fed -super ultra-wideband (S-UWB) MIMO antenna with a bandwidth of 3.6 to 40 GHz. The proposed antenna is composed of two orthogonal sector-shape monopoles (SSM) antenna elements to perform polarization diversity. In addition, a matched L-shaped common ground element is attached for more efficient coupling. The FR-4 substrate of the structure with a size of 23 × 45 × 1.6 mm3 and a dielectric constant of 4.3 is considered. The proposed design is simulated by using CST Microwave Studio commercial software. The simulation shows that the antenna has low mutual coupling (|S21| < -20 dB) with |S11|<−10 dB, ranging from 3.6 to 40 GHz. Envelope correlation coefficient (ECC) is less than 0.008, diversity gain (DG) is more than 9.99, mean effective gain (MEG) is below - 3 dB and total active reflection coefficient (TARC) is less than -6 dB over the whole response band is reported. The proposed MIMO antenna is expected efficiently cover the broadest range of frequencies for contemporary communications applications.

Article
Elliptical Annular Slot Loaded Trapezoidal Dipole Antenna for Band-Notched UWB Applications

Amit Kumar Singh, Nand Kishor Verma

Pages: 23-29

PDF Full Text
Abstract

In this paper, a semi-elliptical annular slot loaded trapezoidal dipole antenna with band-notched characteristics for UWB applications is designed. A microstrip feedline consisting of multiple feedline sections is used for improving the impedance matching. The band-notched characteristics for WLAN band are achieved by loading the trapezoidal dipole arms with semi- elliptical annular slots. The designed antenna structure has an operating range from 3.5-12.4 GHz(109%) with band-rejection in the frequency range of 5-6 GHz. Nearly omnidirectional patterns are achieved for the designed antenna structure. The designed antenna structure provided an average peak gain of 2.12 dB over the entire frequency range except in the notched band where it reduced to -2.4 dB. The experimental and simulation results are observed to be in good agreement. An improved bandwidth performance with miniaturized dimensions as compared to earlier reported antenna structures is achieved.

1 - 6 of 6 items

Search Parameters

Journal Logo
Iraqi Journal for Electrical and Electronic Engineering

College of Engineering, University of Basrah

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

Copyright © 2025 College of Engineering, University of Basrah. All rights reserved, including those for text and data mining, AI training, and similar technologies.