Iraqi Journal for Electrical and Electronic Engineering
Login
Iraqi Journal for Electrical and Electronic Engineering
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
    • Proofreading Service
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
  • About
    • About Journal
    • Aims and Scope
    • Editorial Team
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Abstracting and indexing
    • Announcements
    • Contact

Search Results for transient-response

Article
Transient Response of Multiquantum Well Vertical-Cavity Surface Emitting Lasers

Raad S. Fyath, Saad M. Falh, Fadil R. Tahir

Pages: 64-76

PDF Full Text
Abstract

The dynamic performance of vertical-cavity surface emitting lasers (VCSEL) diodes can be enhanced by incorporating multiquantum-well (MQW) structure in the active region. This paper addresses the transient response of MQW-VCSEL by solving the laser rate equation in the large-signal regime. The analysis makes use of the energy band structure and optical gain spectrum obtained by applying Schrödinger equation to both conduction and valance bands. Simulation results are presented for $1.3~\mu m$ InGaAs/InP VCSEL and indicate clearly that a MQW laser has higher switching speed compared with bulk laser and this finding is more pronounced with small number of wells.

Article
Control Strategy for Three-Phase PWM Boost Rectifier Operating Under Different Supply Voltage Conditions

Turki Kahawish Hassan, Muntadher Kadhem Abdullah

Pages: 83-100

PDF Full Text
Abstract

In this paper, a proposed control strategy is presented to improve the performance of the pulse width modulation (PWM) boost type rectifier when operating under different supply voltage conditions (balanced, unbalanced, and distorted three-phase supply voltages). The proposed control strategy is divided into two parts, the first part is voltage controller and the second part is current controller. In the voltage controller, Repetitive Controller (RC) is used to reduce the even order harmonics in the regulated output dc voltage so small output capacitor (filter) is used instead of large capacitor. RC also reduces the even order harmonics which appear in the reflected dc current (I MAX ), this leads to reduce the odd order harmonics which appear in the input currents. While in the current controller, Enhanced Phase Locked Loop (EPLL) technique is used to obtain sinusoidal and balanced three phases, to construct the reference currents, which are in phase with the fundamental supply voltages. Therefore, the supply-side power factor is kept close to unity. A proportional controller is used to give excellent tracking between the line and the reference currents. The complete system with the proposed control strategy are simulated using Matlab/Simulink. The results for the complete system using repetitive voltage controller are obtained and compared to the results of the system with the conventional voltage controller (Proportional-Integral (PI) controller connected in series with a Low Pass Filter (LPF)). The results with the repetitive controller show better response and stable operation in the steady state under different input voltage conditions, as well as in the transient response under changing the load condition. — Enhanced Phase Locked Loop,Repetitive Controller,Three-Phase PWM Boost Rectifier, Proportional-Integral controller. I. INTRODUCTION The boost type PWM rectifier has been increasingly employed in recent years since it offers the possibility of a low distortion line current withnear unity power factor for any load condition. Another advantage over traditional phase-controlled thyristor rectifiers is its capability for nearly instantaneous reversal of power flow. Unfortunately, the features of the PWM boost type rectifier are fully realized only when the supply three phase input voltages are balanced. It has been shown that unbalanced input voltages cause an abnormal second order harmonic at the dc output voltage, which reflects back to the input causing third-order harmonic current to flow. Next, the third-order harmonic current causes a fourth-order harmonic voltage on the dc bus, and so on. This results in the appearance of even harmonics at the dc output and odd harmonics in the input currents. An attempt was made to reduce low order harmonics at the input and the output of the PWM Boost Type Rectifier under unbalance input voltages [1]. The authors in [2] used two synchronous reference frames: a positive- sequence current regulated by a

Article
Damping of Power Systems Oscillations by using Genetic Algorithm-Based Optimal Controller Damping of Power Systems Oscillations by using Genetic Algorithm-Based Optimal Controller

Akram F. Bati

Pages: 50-55

PDF Full Text
Abstract

In this paper, the power system stabilizer (PSS) and Thyristor controlled phase shifter(TCPS) interaction is investigated . The objective of this work is to study and design a controller capable of doing the task of damping in less economical control effort, and to globally link all controllers of national network in an optimal manner , toward smarter grids . This can be well done if a specific coordination between PSS and FACTS devices , is accomplished . Firstly, A genetic algorithm-based controller is used. Genetic Algorithm (GA) is utilized to search for optimum controller parameter settings that optimize a given eigenvalue based objective function. Secondly, an optimal pole shifting, based on modern control theory for multi-input multi-output systems, is used. It requires solving first order or second order linear matrix Lyapunov equation for shifting dominant poles to much better location that guaranteed less overshoot and less settling time of system transient response following a disturbance.

1 - 3 of 3 items

Search Parameters

Journal Logo
Iraqi Journal for Electrical and Electronic Engineering

College of Engineering, University of Basrah

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

Copyright © 2025 College of Engineering, University of Basrah. All rights reserved, including those for text and data mining, AI training, and similar technologies.