Iraqi Journal for Electrical and Electronic Engineering
Login
Iraqi Journal for Electrical and Electronic Engineering
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
    • Proofreading Service
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
  • About
    • About Journal
    • Aims and Scope
    • Editorial Team
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Abstracting and indexing
    • Announcements
    • Contact

Search Results for tcsc

Article
Optimal Power Flow withWind Turbine and Thyristor-Controlled Series Compensator Based on Particle Swarm Optimization

Muqtada Fadhil, Layth Al-Bahrani

Pages: 160-172

PDF Full Text
Abstract

Increasing the penetration of Renewable Energy Sources (RES) into power systems created challenges and difficulties in the management of power flow since RES have variable power production based on their sources, such as Wind Turbines (WT), which depend on the wind speed. This article used Optimal Power Flow (OPF) to reduce these difficulties and to explain how the OPF can manage the power flow over the system, taking different cases of WT power production based on the different wind speeds. It also used Fixable AC Transmission (FACT) devices such as Thyristor-Controlled Series Compensators (TCSC) to add features to the controllability of the power system. The OPF is a non-linear optimization problem. To solve this problem, the artificial intelligence optimization technique is used. Particle Swarm Optimization (PSO) has been used in the OPF problem in this article. The Objective Functions O.F. discussed here are losses (MW), Voltage Deviation VD (p.u.), and thermal generation fuel Cost ($/h). This article used the wind turbine bus magnitude voltage and the reactance of TCSC as a control variable in OPF. To test this approach, the IEEE 30 bus system is used.

Article
Using a Reduced Order Robust Control Approach to Damp Subsynchronous Resonance in Power Systems

Basim T. Kadhem

Pages: 29-37

PDF Full Text
Abstract

This work focuses on the use of the Linear Quadratic Gaussian (LQG) technique to construct a reliable Static VAr Compensator (SVC), Thyristor Controlled Series Compensator (TCSC), and Excitation System controller for damping Subsynchronous Resonance ( SSR ) in a power system. There is only one quantifiable feedback signal used by the controller (generator speed deviation). It is also possible to purchase this controller in a reduced-order form. The findings of the robust control are contrasted with those of the "idealistic" full state optimal control. The LQG damping controller's regulator robustness is then strengthened by the application of Loop Transfer Recovery (LTR). Nonlinear power system simulation is used to confirm the resilience of the planned controller and demonstrates how well the regulator dampens power system oscillations. The approach dampens all torsional oscillatory modes quickly while maintaining appropriate control actions, according to simulation results.

1 - 2 of 2 items

Search Parameters

Journal Logo
Iraqi Journal for Electrical and Electronic Engineering

College of Engineering, University of Basrah

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

Copyright © 2025 College of Engineering, University of Basrah. All rights reserved, including those for text and data mining, AI training, and similar technologies.