Iraqi Journal for Electrical and Electronic Engineering
Login
Iraqi Journal for Electrical and Electronic Engineering
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
    • Proofreading Service
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
  • About
    • About Journal
    • Aims and Scope
    • Editorial Team
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Abstracting and indexing
    • Announcements
    • Contact

Search Results for svm-classifier

Article
Interactive Real-Time Control System for The Artificial Hand

Hanadi Abbas Jaber, Mofeed Turky Rashid, Luigi Fortuna

Pages: 62-71

PDF Full Text
Abstract

In recent years, the number of researches in the field of artificial limbs has increased significantly in order to improve the performance of the use of these limbs by amputees. During this period, High-Density surface Electromyography (HD-sEMG) signals have been employed for hand gesture identification, in which the performance of the classification process can be improved by using robust spatial features extracted from HD-sEMG signals. In this paper, several algorithms of spatial feature extraction have been proposed to increase the accuracy of the SVM classifier, while the histogram oriented gradient (HOG) has been used to achieve this mission. So, several feature sets have been extracted from HD-sEMG signals such as; features extracted based on HOG denoted by (H); features have been generated by combine intensity feature with H features denoted as (HI); features have been generated by combine average intensity with H features denoted as (AIH). The proposed system has been simulated by MATLAB to calculate the accuracy of the classification process, in addition, the proposed system is practically validated in order to show the ability to use this system by amputees. The results show the high accuracy of the classifier in real-time which leads to an increase in the possibility of using this system as an artificial hand.

Article
Towards for Designing Intelligent Health Care System Based on Machine Learning

Nada Ali Noori, Ali A. Yassin

Pages: 120-128

PDF Full Text
Abstract

Health Information Technology (HIT) provides many opportunities for transforming and improving health care systems. HIT enhances the quality of health care delivery, reduces medical errors, increases patient safety, facilitates care coordination, monitors the updated data over time, improves clinical outcomes, and strengthens the interaction between patients and health care providers. Living in modern large cities has a significant negative impact on people's health, for instance, the increased risk of chronic diseases such as diabetes. According to the rising morbidity in the last decade, the number of patients with diabetes worldwide will exceed 642 million in 2040, meaning that one in every ten adults will be affected. All the previous research on diabetes mellitus indicates that early diagnoses can reduce death rates and overcome many problems. In this regard, machine learning (ML) techniques show promising results in using medical data to predict diabetes at an early stage to save people's lives. In this paper, we propose an intelligent health care system based on ML methods as a real-time monitoring system to detect diabetes mellitus and examine other health issues such as food and drug allergies of patients. The proposed system uses five machine learning methods: K-Nearest Neighbors, Naïve Bayes, Logistic Regression, Random Forest, and Support Vector Machine (SVM). The system selects the best classification method with high accuracy to optimize the diagnosis of patients with diabetes. The experimental results show that in the proposed system, the SVM classifier has the highest accuracy of 83%.

1 - 2 of 2 items

Search Parameters

Journal Logo
Iraqi Journal for Electrical and Electronic Engineering

College of Engineering, University of Basrah

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

Copyright © 2025 College of Engineering, University of Basrah. All rights reserved, including those for text and data mining, AI training, and similar technologies.