Four-leg voltage source inverter is an evolution of the three-leg inverter, and was ought about by the need to handle the non-linear and unbalanced loads. In this work Matlab/ Simulink model is presented using space vector modulation technique. Simulation results for worst conditions of unbalanced linear and non-linear loads are obtained. Observation for the continuity of the fundamental inverter output voltages vector in stationary coordinate is detected for better performance. Matlab programs are executed in block functions to perform switching vector selection and space vector switching.
In medium voltage and high-power drive applications, pulse width modulation (PWM) techniques are widely used to achieve effective speed control of AC motors. In real-time, an industrial drive system requires reduced hardware complexity and low computation time. The reliability of the AC drive can be improved with the FPGA (field programmable gate array) hardware equipped with digital controllers. To improve the performance of AC drives, a new FPGA-based Wavect real-time prototype controller (Xilinx ZYNQ-7000 SoC) is used to verify the effectiveness of the controller. These advanced controllers are capable of reducing computation time and enhancing the drive performance in real- time applications. The comparative performance analysis is carried out for the most commonly used voltage source inverter (VSI)-based PWM techniques such as sinusoidal pulse width modulation (SPWM) and space vector pulse width modulation (SVPWM) for three-phase, two-level inverters. The comparative study shows the SVPWM technique utilizes DC bus voltage more effectively and produces less harmonic distortion in terms of higher output voltage, flexible control of output frequency, and reduced harmonic distortion at output voltage for motor control applications. The simulation and hardware results are verified and validated by using MATLAB/Simulink software and FPGA-based Wavect real-time controller respectively.
In this paper, the vector-controlled Permanent Magnet Synchronous Motor (PMSM) fed by Indirect Matrix Converter (IMC) is analyzed, designed, and simulated by using the IMC with Carrier Based Pulse Width Modulation (CBPWM). The CBPWM strategy is based on Space Vector Pulse Width Modulation (SVPWM) analysis, it is used to enhance the input current waveform, reduce the complexity of switching signals generation, and to solve the commutation problem. The traditional PMSM drive system is simulated for comparison with proposed drive system. The proposed drive system is compared to the traditional drive system using the Total Harmonic Distortion (THD). The comparison results show that the proposed drive system outperform the traditional drive system by THD different of 1/30 of input current and 1/1.5 of stator current, with high input power factor.
A Matlab/Simulink model for the Finite Control Set Model Predictive current Control FCS-MPC based on cost function optimization, with current limit constraints for four-leg VSI is presented in this paper, as a new control algorithm. The algorithm selects the switching states that produce minimum error between the reference currents and the predicted currents via optimization process, and apply the corresponding switching control signals to the inverter switches. The new algorithm also implements current constraints which excludes any switching state that produces currents above the desired references. Therefore, the system response is enhanced since there is no overshoots or deviations from references. Comparison is made between the Space Vector Pulse Width Modulation SVPWM and the FCS-MPC control strategies for the same load conditions. The results show the superiority of the new control strategy with observed reduction in inverter output voltage THD by 10% which makes the FCS-MPC strategy more preferable for loads that requires less harmonics distortion.
The Permanent Magnet Synchronous Motor (PMSM) is commonly used as traction motors in the electric traction applications such as in subway train. The subway train is better transport vehicle due to its advantages of security, economic, health and friendly with nature. Braking is defined as removal of the kinetic energy stored in moving parts of machine. The plugging braking is the best braking offered and has the shortest time to stop. The subway train is a heavy machine and has a very high moment of inertia requiring a high braking torque to stop. The plugging braking is an effective method to provide a fast stop to the train. In this paper plugging braking system of the PMSM used in the subway train in normal and fault-tolerant operation is made. The model of the PMSM, three-phase Voltage Source Inverter (VSI) controlled using Space Vector Pulse Width Modulation technique (SVPWM), Field Oriented Control method (FOC) for independent control of two identical PMSMs and fault-tolerant operation is presented. Simulink model of the plugging braking system of PMSM in normal and fault tolerant operation is proposed using Matlab/Simulink software. Simulation results for different cases are given.
This paper suggests the use of the traditional parallel resonant dc link (PRDCL) circuit to give soft switching to the Four-leg Space Vector Pulse Width Modulation (SVPWM) inverter. The proposed circuit provides a short period of zero voltage across the inverter during the zero-vectors occurrence. The transition between the zero and active vectors accomplished with zero- voltage condition (ZVC), this reduces the switching losses. Moreover, the inverter output voltage Total Harmonic Distortion (THD) not affected by circuit operation, since the zero voltage periods occur simultaneously with zero-vector periods. To confirm the results, balanced and unbalanced loads are used. Matlab/Simulink model implemented for simulation.