In recent years, the urgent need for robotics applications in various sensitive work areas and high buildings has led to a significant development in the design of robots intended for climbing rough surfaces. Where, attention became focused on the ideal clinging mechanism. In this paper, a gripper of the climbing robot has been designed to achieve clinging on rough walls. The objective of this design is to be lightweight with high performance of clinging, therefore, a robot gripper has been designed based on a model of a limb inspired by the hand and claws of a cat, in which the robot claws were implemented by fishing hooks. These hooks are arranged in an arc so that each hook can move independently on the wall’s surface to increase the force of clinging to the rough wall. SolidWorks platform has been used to design the clinging limb and implemented using a 3D printer. In addition, the proposed design has been validated by performing several simulations using the SolidWorks platform. Experimental work has conducted to test the proposed design, and the results proved the success of the design.
Swimming performance underlies the biomechanical properties and functional morphology of fish fins. In this article, a pair of concave fin has been suggested, which is inspired from Labriform-mode Swimming fish. First, three concave fins with different sizes are proposed in order to choose the optimum size. All three fins have the same length but with different surface areas, such that each fin has an aspect ratio different from the others. Next, the complete design of the robot is suggested, the complete design of the body and pectoral fins were subjected to computational fluid dynamics (CFD) analysis to show the validity of the proposed model. Finally, the physical model is suggested and provided with 3D printer of Polylactic Acid (PLA) with a density of 1240 kg/ m3. The swimming robot fins have been examined by CFD analysis provided by Solidworks® to evaluate the highest thrust and lowest drag forces. The result showed that the optimum fin is the one with the lowest aspect ratio fin produces the highest drag, whereas the highest aspect ratio fin gives the lowest drag and thrust, therefore; a value of aspect ratio in between these two cases is chosen. While other types of examinations are based on motion analysis of the 3D design, the required motor torque is calculated in order to select a suitable servomotor for this purpose, which a HS-5086WP waterproof servomotor can achieve the calculated torque.