Iraqi Journal for Electrical and Electronic Engineering
Login
Iraqi Journal for Electrical and Electronic Engineering
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
    • Proofreading Service
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
  • About
    • About Journal
    • Aims and Scope
    • Editorial Team
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Abstracting and indexing
    • Announcements
    • Contact

Search Results for soft-switching

Article
Matlab/Simulink Modeling of Parallel Resonant DC Link Soft-Switching Four-leg SVPWM Inverter

Riyadh G. Omar, Rabee' H. Thejel

Pages: 70-82

PDF Full Text
Abstract

This paper suggests the use of the traditional parallel resonant dc link (PRDCL) circuit to give soft switching to the Four-leg Space Vector Pulse Width Modulation (SVPWM) inverter. The proposed circuit provides a short period of zero voltage across the inverter during the zero-vectors occurrence. The transition between the zero and active vectors accomplished with zero- voltage condition (ZVC), this reduces the switching losses. Moreover, the inverter output voltage Total Harmonic Distortion (THD) not affected by circuit operation, since the zero voltage periods occur simultaneously with zero-vector periods. To confirm the results, balanced and unbalanced loads are used. Matlab/Simulink model implemented for simulation.

Article
A Novel Topology of Zero-Current Transition (ZCT) Voltage-Source PWM three-phase Inverter

Dr.Mustafa M. Ibrahim, Basim Talib Kadhim

Pages: 59-75

PDF Full Text
Abstract

Soft-switching technique can substantially improve the performance of power converters, mainly due to the increase of switching frequency, that result in better modulation quality. This is more concerned particularly in the high power applications, where devices [gate turn off (GTO) or something else similar) can not operate over a few hundreds of hertz in conventional hard switching converter structures. In this paper, design and analysis of moderate power ZCT three-phase PWM inverter has been presented. Also, the designed inverter and its novel control circuit is implemented experimentally to investigate its characteristics with this new zero-current transition ZCT technique.

Article
Design of PLL Controller for Resonant Frequency Tracking of Five-Level Inverter Used for Induction Heating Applications

Aws H. Al-Jrew, Jawad R. Mahmood, Ramzy S. Ali

Pages: 169-178

PDF Full Text
Abstract

In this work, the phase lock loop PLL-based controller has been adopted for tracking the resonant frequency to achieve maximum power transfer between the power source and the resonant load. The soft switching approach has been obtained to reduce switching losses and improve the overall efficiency of the induction heating system. The jury’s stability test has been used to evaluate the system’s stability. In this article, a multilevel inverter has been used with a series resonant load for an induction heating system to clarify the effectiveness of using it over the conventional full-bridge inverter used for induction heating purposes. Reduced switches five-level inverter has been implemented to minimize switching losses, the number of drive circuits, and the control circuit’s complexity. A comparison has been made between the conventional induction heating system with full bridge inverter and the induction heating system with five level inverter in terms of overall efficiency and total harmonic distortion THD. MATLAB/ SIMULINK has been used for modeling and analysis. The mathematical analysis associated with simulation results shows that the proposed topology and control system performs well.

Article
Control of ZCZVT Commutation Cell Inverter

Rabee' Hashim Thejel

Pages: 70-77

PDF Full Text
Abstract

This paper proposes a new control circuit to control the switching of the main switches of the used Zero Current Zero Voltage Transition (ZCZVT) inverter to ensure Zero Current and Zero Voltage Switching (ZCZVS). The reverse recovery losses of the main diodes are minimized and the auxiliary switches of the commutation cell are turned on at Zero Current Switching (ZCS) and off at ZCZVS. The commutation losses are practically reduced to zero due to ZCS. Sinusoidal Pulse Width Modulation (SPWM) is used to perform the switching of the power semiconductor devices and to control the output voltage value. MATLAB software is used to simulate the inverter circuit. Simulation results are presented to demonstrate the feasibility of the proposed control circuit.

Article
Design and Analysis of DC/DC ZCT Boost Converter with Moderate Output Power

Mustafa M. Ibrahim, Khalid M. Abdul-Hassun

Pages: 43-58

PDF Full Text
Abstract

Soft commutation techniques have been of great interest during the last few years in power supply switching applications. The recently developed Zero-Voltage transition (ZVT) and Zero-Current transition (ZCT) pulse width modulation (PWM) technique incorporated soft-switching function into PWM converters, so that the switching losses can be reduced with minimum voltage/current stresses and circulating energy. The ZCT technique can significantly reduce the switch turn-off loss which is usually the dominant switching loss in high-power applications. In this paper the steady state analysis and design of the ZCT PWM boost converter are introduced. Control and drive circuit have been designed to drive a 100 Watt ZCT PWM boost converter to experimentally investigate its features and characteristics.

1 - 5 of 5 items

Search Parameters

Journal Logo
Iraqi Journal for Electrical and Electronic Engineering

College of Engineering, University of Basrah

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

Copyright © 2025 College of Engineering, University of Basrah. All rights reserved, including those for text and data mining, AI training, and similar technologies.