Iraqi Journal for Electrical and Electronic Engineering
Login
Iraqi Journal for Electrical and Electronic Engineering
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
    • Proofreading Service
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
  • About
    • About Journal
    • Aims and Scope
    • Editorial Team
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Abstracting and indexing
    • Announcements
    • Contact

Search Results for smart-grid

Article
Self-Powered Wide Area Infrastructure Based on WiMAX for Real Time Applications of Smart Grid

Firas S. Alsharbaty, Qutaiba I. Ali

Pages: 92-100

PDF Full Text
Abstract

This work presents a wireless communication network (WCN) infrastructure for the smart grid based on the technology of Worldwide Interoperability for Microwave Access (WiMAX) to address the main real-time applications of the smart grid such as Wide Area Monitoring and Control (WAMC), video surveillance, and distributed energy resources (DER) to provide low cost, flexibility, and expansion. Such wireless networks suffer from two significant impairments. On one hand, the data of real- time applications should deliver to the control center under robust conditions in terms of reliability and latency where the packet loss is increased with the increment of the number of industrial clients and transmission frequency rate under the limited capacity of WiMAX base station (BS). This research suggests wireless edge computing using WiMAX servers to address reliability and availability. On the other hand, BSs and servers consume affected energy from the power grid. Therefore, the suggested WCN is enhanced by green self-powered based on solar energy to compensate for the expected consumption of energy. The model of the system is built using an analytical approach and OPNET modeler. The results indicated that the suggested WCN based on green WiMAX BS and green edge computing can handle the latency and data reliability of the smart grid applications successfully and with a self-powered supply. For instance, WCN offered latency below 20 msec and received data reliability up to 99.99% in the case of the heaviest application in terms of data.

Article
Pro-active Selfhealing – An Extension concept in SmartGrid

Noman Nisar, Jay Panchal

Pages: 159-164

PDF Full Text
Abstract

The reliability of power system under fault susceptible environment has become major challenge for the power sector units. The injection of renewable power source has increased the complexity for distribution system and to deal with massive network, evolution of smart-grid has been enforced, which works in an automated fashion to improve overall reliability, efficiency and quality of the system. Proactive Self-healing is a critical feature of smart-grid. This paper tries to explain the concept sensing the occurrence of fault beforehand and providing possible solution for self-healing in smart grid. The fundamental base for incorporating afore discussed technology viz. understanding nature of fault, sources of fault and implementation of effective measuring techniques are enumerated in paper briefly. Support required in terms of technology is reviewed towards the end followed by a case study of practical implementation of self-healing control in a distribution system.

Article
Comparative Long-Term Electricity Forecasting Analysis: A Case Study of Load Dispatch Centres in India

Saikat Gochhait, Deepak K. Sharma, Mrinal Bachute

Pages: 207-219

PDF Full Text
Abstract

Accurate long-term load forecasting (LTLF) is crucial for smart grid operations, but existing CNN-based methods face challenges in extracting essential featuresfrom electricity load data, resulting in diminished forecasting performance. To overcome this limitation, we propose a novel ensemble model that integratesa feature extraction module, densely connected residual block (DCRB), longshort-term memory layer (LSTM), and ensemble thinking. The feature extraction module captures the randomness and trends in climate data, enhancing the accuracy of load data analysis. Leveraging the DCRB, our model demonstrates superior performance by extracting features from multi-scale input data, surpassing conventional CNN-based models. We evaluate our model using hourly load data from Odisha and day-wise data from Delhi, and the experimental results exhibit low root mean square error (RMSE) values of 0.952 and 0.864 for Odisha and Delhi, respectively. This research contributes to a comparative long-term electricity forecasting analysis, showcasing the efficiency of our proposed model in power system management. Moreover, the model holds the potential to sup-port decisionmaking processes, making it a valuable tool for stakeholders in the electricity sector.

Article
Design and Implementation of Smart Electrical Power Meter System

Mofeed Turky Rashid

Pages: 1-14

PDF Full Text
Abstract

In recent years, increased importance of Smart Grid, which includes monitoring and control the consumption of customers of electric power. In this paper, Wireless Smart Electrical Power Meter has been designed and implemented which ZigBee wireless sensor network (WSN) will be used for wireless electrical power meter communication supported by PIC microcontroller which used for power unit measurements. PIC microcontroller will be used for evaluating all electric power parameters at costumer side like V rms , I rms , KWh, and PF, and then all these parameters will be send to base station through wireless network in order to be calibrated and monitored.

Article
Energy Demand Prediction Based on Deep Learning Techniques

Sarab Shanan Swide, Ali F. Marhoon

Pages: 83-89

PDF Full Text
Abstract

The development of renewable resources and the deregulation of the market have made forecasting energy demand more critical in recent years. Advanced intelligent models are created to ensure accurate power projections for several time horizons to address new difficulties. Intelligent forecasting algorithms are a fundamental component of smart grids and a powerful tool for reducing uncertainty in order to make more cost- and energy-efficient decisions about generation scheduling, system reliability and power optimization, and profitable smart grid operations. However, since many crucial tasks of power operators, such as load dispatch, rely on short-term forecasts, prediction accuracy in forecasting algorithms is highly desired. This essay suggests a model for estimating Denmark’s power use that can precisely forecast the month’s demand. In order to identify factors that may have an impact on the pattern of a number of unique qualities in the city direct consumption of electricity. The current paper also demonstrates how to use an ensemble deep learning technique and Random forest to dramatically increase prediction accuracy. In addition to their ensemble, we showed how well the individual Random forest performed.

Article
Adaptive Energy Management System for Smart Hybrid Microgrids

Bilal Naji Alhasnawi, Basil H. Jasim

Pages: 73-85

PDF Full Text
Abstract

The energy management will play an important role in the future smart grid by managing loads in an intelligent way. Energy management programs, realized via House Energy Management systems (HEMS) for smart cities, provide many benefits; consumers enjoy electricity price savings, and utility operates at reduced peak demand. This paper proposed an adaptive energy management system for islanded mode and grid-connected mode. In this paper, a hybrid system that includes distribution electric grid, photovoltaics, and batteries are employed as energy sources in the residential of the consumer in order to meet the demand. The proposed system permits coordinated operation of distributed energy resources to concede necessary active power and additional service whenever required. This paper uses home energy management system which switches between the distributed energy and the grid power sources. The home energy management system incorporates controllers for maximum power point tracking, battery charge and discharge and inverter for effective control between different sources depending upon load requirement and availability of sources at maximum powerpoint. Also, in this paper, the Maximum Power Point Tracking (MPPT) technique is applied to the photovoltaic station to extract the maximum power from hybrid power system during variation of the environmental conditions. The operation strategy of energy storage systems is proposed to solve the power changes from photovoltaics and houses loads fluctuations locally, instead of reflecting those disturbances to the utility grid. Furthermore, the energy storage systems energy management scheme will help to achieve the peak reduction of the houses daily electrical load demand. The simulation results have verified the effectiveness and feasibility of the introduced strategy and the capability of the proposed controller for a hybrid microgrid operating in different modes.

1 - 6 of 6 items

Search Parameters

Journal Logo
Iraqi Journal for Electrical and Electronic Engineering

College of Engineering, University of Basrah

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

Copyright © 2025 College of Engineering, University of Basrah. All rights reserved, including those for text and data mining, AI training, and similar technologies.