A self learning fuzzy logic controller for ship steering systems is proposed in this paper. Due to the high nonlinearity of ship steering system, the performances of traditional control algorithms are not satisfactory in fact. An intelligent control system is designed for controlling the direction heading of ships to improve the high e ffi ciency of transportation, the convenience of manoeuvring ships, and the safety of navigation. The design of fuzzy controllers is usually performed in an ad hoc manner where it is hard to justify the choice of some fuzzy control parameters such as the parameters of membership function. In this paper, self tuning algorithm is used to adjust the parameters of fuzzy controller. Simulation results show that the efficiency of proposed algorithm to design a fuzzy controller for ship steering system.
In this paper, a combined RBF neural network sliding mode control and PD adaptive tracking controller is proposed for controlling the directional heading course of a ship. Due to the high nonlinearity and uncertainty of the ship dynamics as well as the effect of wave disturbances a performance evaluation and ship controller design is stay difficult task. The Neural network used for adaptively learn the uncertain dynamics bounds of the ship and their output used as part of the control law moreover the PD term is used to reduce the effect of the approximation error inherited in the RBF networks. The stability of the system with the combined control law guaranteed through Lyapunov analysis. Numeric simulation results confirm the proposed controller provide good system stability and convergence.