Iraqi Journal for Electrical and Electronic Engineering
Login
Iraqi Journal for Electrical and Electronic Engineering
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
    • Proofreading Service
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
  • About
    • About Journal
    • Aims and Scope
    • Editorial Team
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Abstracting and indexing
    • Announcements
    • Contact

Search Results for self-driving-cars-

Article
Feature Deep Learning Extraction Approach for Object Detection in Self-Driving Cars

Namareq Odey, Ali Marhoon

Pages: 62-69

PDF Full Text
Abstract

Self-driving cars are a fundamental research subject in recent years; the ultimate goal is to completely exchange the human driver with automated systems. On the other hand, deep learning techniques have revealed performance and effectiveness in several areas. The strength of self-driving cars has been deeply investigated in many areas including object detection, localization as well, and activity recognition. This paper provides an approach to deep learning; which combines the benefits of both convolutional neural network CNN together with Dense technique. This approach learns based on features extracted from the feature extraction technique which is linear discriminant analysis LDA combined with feature expansion techniques namely: standard deviation, min, max, mod, variance and mean. The presented approach has proven its success in both testing and training data and achieving 100% accuracy in both terms.

Article
A Novel Deep Learning Object Detection Based on PCA Features for Self Driving Cars

Namareq Odey, Ali Marhoon

Pages: 186-195

PDF Full Text
Abstract

In recent years, self-driving cars and reducing the number of accident casualties have drawn a lot of attention. Although it is crucial to increase driver awareness on the road, autonomous vehicles can emulate human driving and guarantee improved levels of road safety. Artificial intelligence (AI) technologies are often employed for this purpose. However, deep learning, a subset of AI, is prone to numerous errors, a wide range of threats, and needs to handle vast amounts of data, which imposes high-performance hardware requirements. This study suggests a deep learning model for object recognition that employs characteristics to describe data rather than images. Our model employs the COCO dataset as the training foundation, and it was suggested that the features be retrieved using the principal component analysis PCA extraction method. The current results demonstrate the efficacy and precision of our model, with an accuracy of 99.96 %. Furthermore, the performance indices, i.e., recall, precision, and F1-score, achieved about 1 for most of the COCO classes in training phase and promising results in testing phase.

1 - 2 of 2 items

Search Parameters

Journal Logo
Iraqi Journal for Electrical and Electronic Engineering

College of Engineering, University of Basrah

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

Copyright © 2025 College of Engineering, University of Basrah. All rights reserved, including those for text and data mining, AI training, and similar technologies.