Brain machine interface provides a communication channel between the human brain and an external device. Brain interfaces are studied to provide rehabilitation to patients with neurodegenerative diseases; such patients loose all communication pathways except for their sensory and cognitive functions. One of the possible rehabilitation methods for these patients is to provide a brain machine interface (BMI) for communication; the BMI uses the electrical activity of the brain detected by scalp EEG electrodes. Classification of EEG signals extracted during mental tasks is a technique for designing a BMI. In this paper a BMI design using five mental tasks from two subjects were studied, a combination of two tasks is studied per subject. An Elman recurrent neural network is proposed for classification of EEG signals. Two feature extraction algorithms using overlapped and non overlapped signal segments are analyzed. Principal component analysis is used for extracting features from the EEG signal segments. Classification performance of overlapping EEG signal segments is observed to be better in terms of average classification with a range of 78.5% to 100%, while the non overlapping EEG signal segments show better classification in terms of maximum classifications.
Bin picking robots require vision sensors capable of recognizing objects in the bin irrespective of the orientation and pose of the objects inside the bin. Bin picking systems are still a challenge to the robot vision research community due to the complexity of segmenting of occluded industrial objects as well as recognizing the segmented objects which have irregular shapes. In this paper a simple object recognition method is presented using singular value decomposition of the object image matrix and a functional link neural network for a bin picking vision system. The results of the functional link net are compared with that of a simple feed forward net. The network is trained using the error back propagation procedure. The proposed method is robust for recognition of objects.
Path-planning is a crucial part of robotics, helping robots move through challenging places all by themselves. In this paper, we introduce an innovative approach to robot path-planning, a crucial aspect of robotics. This technique combines the power of Genetic Algorithm (GA) and Probabilistic Roadmap (PRM) to enhance efficiency and reliability. Our method takes into account challenges caused by moving obstacles, making it skilled at navigating complex environments. Through merging GA’s exploration abilities with PRM’s global planning strengths, our GA-PRM algorithm improves computational efficiency and finds optimal paths. To validate our approach, we conducted rigorous evaluations against well-known algorithms including A*, RRT, Genetic Algorithm, and PRM in simulated environments. The results were remarkable, with our GA-PRM algorithm outperforming existing methods, achieving an average path length of 25.6235 units and an average computational time of 0.6881 seconds, demonstrating its speed and effectiveness. Additionally, the paths generated were notably smoother, with an average value of 0.3133. These findings highlight the potential of the GA-PRM algorithm in real-world applications, especially in crucial sectors like healthcare, where efficient path-planning is essential. This research contributes significantly to the field of path-planning and offers valuable insights for the future design of autonomous robotic systems.
The goal for collaborative robots has always driven advancements in robotic technology, especially in the manufacturing sector. However, this is not the case in service sectors, especially in the health sector. Thus, this lack of focus has now opened more room for the design and development of service robots that can be used in the health sector to help patients with ailments, cognitive problems, and disabilities. There is currently a global effort towards the development of new products and the use of robotic medical devices and computer-assisted systems. However, the major problem has been the lack of a thorough and systematic review of robotic research into disease and epidemiology, especially from a technology perspective. Also, medical robots are increasingly being used in healthcare to perform a variety of functions that improve patient care. This scoping review is aimed at discovering the types of robots used in healthcare and where they are deployed. Moreover, the current study is an overview of various forms of robotic technology and its uses the healthcare industry. The considered technologies are the products of a partnership between the healthcare sector and academia. They demonstrate the research and testing that are necessary for the service of robot development before they can be employed in practical applications and service scenarios. The discussion also focused on the upcoming research areas in robotic systems as well as some important technologies necessary for human-robot collaboration, such as wireless sensor networks, big data, and artificial intelligence.
A robot is a smart machine that can help people in their daily lives and keep everyone safe. the three general sequences to accomplish any robot task is mapping the environment, the localization, and the navigation (path planning with obstacle avoidance). Since the goal of the robot is to reach its target without colliding, the most important and challenging task of the mobile robot is the navigation. In this paper, the robot navigation problem is solved by proposed two algorithms using low-cost IR receiver sensors arranged as an array, and a robot has been equipped with one IR transmitter. Firstly, the shortest orientation algorithm is proposed, the robot direction is corrected at each step of movement depending on the angle calculation. secondly, an Active orientation algorithm is presented to solve the weakness in the preceding algorithm. A chain of the active sensors in the environment within the sensing range of the virtual path is activated to be scan through the robot movement. In each algorithm, the initial position of the robot is detected using the modified binary search algorithm, various stages are used to avoid obstacles through suitable equations focusing on finding the shortest and the safer path of the robot. Simulation results with multi-resolution environment explained the efficiency of the algorithms, they are compatible with the designed environment, it provides safe movements (without hitting obstacles) and a good system control performance. A Comparison table is also provided.
In maze maneuvering, it is needed for a mobile robot to feasibly plan the shortest path from its initial posture to the desired destination in a given environment. To achieve that, the mobile robot is combined with multiple distance sensors to assist the navigation while avoiding obstructing obstacles and following the shortest path toward the target. Additionally, a vision sensor is used to detect and track colored objects. A new algorithm is proposed based on different type of utilized sensors to aid the maneuvering of differential drive mobile robot in an unknown environment. In the proposed algorithm, the robot has the ability to traverse surrounding hindrances and seek for a particular object based on its color. Six infrared sensors are used to detect any located obstacles and one color detection sensor is used to locate the colored object. The Mobile Robotics Simulation Toolbox in Matlab is used to test the proposed algorithm. Three different scenarios are studied to prove the efficiency of the proposed algorithm. The simulation results demonstrate that the mobile robot has successfully accomplished the tracking and locating of a colored object without collision with hurdles.
Today, the trends are the robotics field since it is used in too many environments that are very important in human life. Covid 19 disease is now the deadliest disease in the world, and most studies are being conducted to find solutions and avoid contracting it. The proposed system senses the presence according to a specific injury to warn of it and transfer it to the specialist doctor. This system is designed to work in service departments such as universities, institutes, and all state departments serving citizens. This system consists of two parts: the first is fixed and placed on the desk and the other is mobile within a special robot that moves to perform the required task. This system was tested at the University of Basrah within the college of engineering, department of electrical Engineering, on teaching staff, students, and staff during the period of final academic exams. The presence of such a device is considered a warning according to a specific condition and isn’t a treatment for it, as the treatment is prescribed by the specialist doctor. It is found that the average number of infected cases is about 3% of the total number of students and the teaching staff and the working staff. The results were documented in special tables that go to the dean of the college with the attendance tables to know the daily health status of the students.
The last few years Quadrotor became an important topic, many researches have implemented and tested concerning that topic. Quadrotor also called an unmanned Aerial Vehicle (UAV), it's highly used in many applications like security, civil applications, aid, rescue and a lot of other applications. It’s not a conventional helicopter because of small size, low cost and the ability of vertical and takeoff landing (VTOL). The models kept an eye on quadrotors were presented, the advancement of this new kind of air vehicle is hindered for a very long while because of different reasons, for example, mechanical multifaceted nature, enormous size and weight, and challenges in charge particularly. Just as of late a lot of interests and endeavors have been pulled in on it; a quadrotor has even become a progressively discretionary vehicle for useful application. Quadrotor can be used in variable, different , outdoor and indoor missions; these missions should be implemented with high value of accuracy and quality. In this work two scenarios suggested for different two missions. First mission the quadrotor will be used to reach different goals in the simulated city for different places during one flight using path following algorithm. The second mission will be an indoor arrival mission, during that mission quadrotor will avoid obstacles by using only Pure pursuit algorithm (PPA). To show the benefit of using the new strategy it will compare with a victor field histogram algorithm (VFH) which is used widely in robotics for avoiding obstacles, the comparison will be in terms of reaching time and distance of reaching the goal. The Gazebo Simulator (GS) is used to visualize the movement of the quadrotor. The gazebo has another preferred position it helps to show the motion development of the quadrotor without managing the mathematical model of the quadrotor. The Robotic Operating System (ROS) is used to transfer the data between the MATLAB Simulink program and the Gazebo Simulator. The diversion results show that, the proposed mission techniques win to drive the quarter on the perfect route similarly at the limit with regards to the quadrotor to go without hitting any obstacle in the perfect way.
Obstacle avoidance in mobile robot path planning represents an exciting field of robotics systems. There are numerous algorithms available, each with its own set of features. In this paper a Witch of Agnesi curve algorithm is proposed to prevent a collision by the mobile robot’s orientation beyond the obstacles which represents an important problem in path planning, further, to achieve a minimum arrival time by following the shortest path which leads to minimizing power loss. The proposed approach considers the mobile robot’s platform equipped with the LIDAR 360o sensor to detect obstacle positions in any environment of the mobile robot. Obstacles detected in the sensing range of the mobile robot are dealt with by using the Witch of Agnesi curve algorithm, this establishes the obstacle’s apparent vertices’ virtual minimum bounding circle with minimum error. Several Scenarios are implemented and considered based on the identification of obstacles in the mobile robot environment. The proposed system has been simulated by the V-REP platform by designing several scenarios that emulate the behavior of the robot during the path planning model. The simulation and experimental results show the optimal performance of the mobile robot during navigation is obtained as compared to the other methods with minimum power loss and also with minimum error. It’s given 96.3 percent in terms of the average of the total path while the Bezier algorithm gave 94.67 percent. While in experimental results the proposed algorithm gave 93.45 and the Bezier algorithm gave 92.19 percent.
With the recent developments of technology and the advances in artificial intelligence and machine learning techniques, it has become possible for the robot to understand and respond to voice as part of Human-Robot Interaction (HRI). The voice-based interface robot can recognize the speech information from humans so that it will be able to interact more naturally with its human counterpart in different environments. In this work, a review of the voice-based interface for HRI systems has been presented. The review focuses on voice-based perception in HRI systems from three facets, which are: feature extraction, dimensionality reduction, and semantic understanding. For feature extraction, numerous types of features have been reviewed in various domains, such as time, frequency, cepstral (i.e. implementing the inverse Fourier transform for the signal spectrum logarithm), and deep domains. For dimensionality reduction, subspace learning can be used to eliminate the redundancies of high-dimensional features by further processing extracted features to reflect their semantic information better. For semantic understanding, the aim is to infer from the extracted features the objects or human behaviors. Numerous types of semantic understanding have been reviewed, such as speech recognition, speaker recognition, speaker gender detection, speaker gender and age estimation, and speaker localization. Finally, some of the existing voice-based interface issues and recommendations for future works have been outlined.
Hand gesture recognition is a quickly developing field with many uses in human-computer interaction, sign language recognition, virtual reality, gaming, and robotics. This paper reviews different ways to model hands, such as vision-based, sensor-based, and data glove-based techniques. It emphasizes the importance of accurate hand modeling and feature extraction for capturing and analyzing gestures. Key features like motion, depth, color, shape, and pixel values and their relevance in gesture recognition are discussed. Challenges faced in hand gesture recognition include lighting variations, complex backgrounds, noise, and real-time performance. Machine learning algorithms are used to classify and recognize gestures based on extracted features. The paper emphasizes the need for further research and advancements to improve hand gesture recognition systems’ robustness, accuracy, and usability. This review offers valuable insights into the current state of hand gesture recognition, its applications, and its potential to revolutionize human-computer interaction and enable natural and intuitive interactions between humans and machines. In simpler terms, hand gesture recognition is a way for computers to understand what people are saying with their hands. It has many potential applications, such as allowing people to control computers without touching them or helping people with disabilities communicate. The paper reviews different ways to develop hand gesture recognition systems and discusses the challenges and opportunities in this area.
Soft robotics is a modern technique that allows robots to have more capabilities than conventional rigid robots. Pneumatic Muscle Actuators (PMAs), also known as McKibben actuators, are an example of soft actuators. This research covered the design and production of a pneumatic robot end effector. Smooth, elastic, flexible, and soft qualities materials have contributed to the creation of Soft Robot End-Effector (SREE). To give SREE compliance, it needs to handle delicate objects while allowing it to adapt to its surroundings safely. The research focuses on the variable stiffness SREE’s inspiration design, construction, and manufacturing. As a result, a new four-fingered variable stiffness soft robot end effector was created. SREE has been designed using two types of PMAs: Contractor PMAs (CPMAs) and Extensor PMAs (EPMAs). Through tendons and Contractor PMAs, fingers can close and open. SREE was tested and put into practice to handle various object types. The innovative movement of the suggested SREE allows it to grip with only two fingers and open and close its grasp with all of its fingers.
A composite PD and sliding mode neural network (NN)-based adaptive controller, for robotic manipulator trajectory tracking, is presented in this paper. The designed neural networks are exploited to approximate the robotics dynamics nonlinearities, and compensate its effect and this will enhance the performance of the filtered error based PD and sliding mode controller. Lyapunov theorem has been used to prove the stability of the system and the tracking error boundedness. The augmented Lyapunov function is used to derive the NN weights learning law. To reduce the effect of breaching the NN learning law excitation condition due to external disturbances and measurement noise; a modified learning law is suggested based on e-modification algorithm. The controller effectiveness is demonstrated through computer simulation of cylindrical robot manipulator.
Soft computing control system have been applied in various applications particularly in the fields of robotics controls. The advantage of having a soft computing controls methods is that it enable more flexibility to the control system compared with conventional model based controls system. In this paper, a UAV airship is controlled using fuzzy logic for its propulsion and steering system. The airship is tested on a simulation level before test flight. The prototype airship has on board GPS and compass for telemetry and transmitted to the ground control system via a wireless link.
According to the growing interest in the soft robotics research field, where various industrial and medical applications have been developed by employing soft robots. Our focus in this paper will be the Pneumatic Muscle Actuator (PMA), which is the heart of the soft robot. Achieving an accurate control method to adjust the actuator length to a predefined set point is a very difficult problem because of the hysteresis and nonlinearity behaviors of the PMA. So the construction and control of a 30 cm soft contractor pneumatic muscle actuator (SCPMA) were done here, and by using different strategies such as the PID controller, Bang-Bang controller, Neural network controller, and Fuzzy controller, to adjust the length of the (SCPMA) between 30 cm and 24 cm by utilizing the amount of air coming from the air compressor. All of these strategies will be theoretically implemented using the MATLAB/Simulink package. Also, the performance of these control systems will be compared with respect to the time-domain characteristics and the root mean square error (RMSE). As a result, the controller performance accuracy and robustness ranged from one controller to another, and we found that the fuzzy logic controller was one of the best strategies used here according to the simplicity of the implementation and the very accurate response obtained from this method.