Iraqi Journal for Electrical and Electronic Engineering
Login
Iraqi Journal for Electrical and Electronic Engineering
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
    • Proofreading Service
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
  • About
    • About Journal
    • Aims and Scope
    • Editorial Team
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Abstracting and indexing
    • Announcements
    • Contact

Search Results for reinforcement-learning-designer

Article
Learning the Quadruped Robot by Reinforcement Learning (RL)

A. A. Issa, A. A. Aldair

Pages: 117-126

PDF Full Text
Abstract

In this paper, a simulation was utilized to create and test the suggested controller and to investigate the ability of a quadruped robot based on the SimScape-Multibody toolbox, with PID controllers and deep deterministic policy gradient DDPG Reinforcement learning (RL) techniques. A quadruped robot has been simulated using three different scenarios based on two methods to control its movement, namely PID and DDPG. Instead of using two links per leg, the quadruped robot was constructed with three links per leg, to maximize movement versatility. The quadruped robot-built architecture uses twelve servomotors, three per leg, and 12-PID controllers in total for each servomotor. By utilizing the SimScape-Multibody toolbox, the quadruped robot can build without needing to use the mathematical model. By varying the walking robot's carrying load, the robustness of the developed controller is investigated. Firstly, the walking robot is designed with an open loop system and the result shows that the robot falls at starting of the simulation. Secondly, auto-tuning are used to find the optimal parameter like (KP, KI and KD) of PID controllers and resulting shows the robot can walk in a straight line. Finally, DDPG reinforcement learning is proposed to generate and improve the walking motion of the quadruped robot, and the results show that the behaviour of the walking robot has been improved compared with the previous cases, Also, the results produced when RL is employed instead of PID controllers are better.

1 - 1 of 1 items

Search Parameters

Journal Logo
Iraqi Journal for Electrical and Electronic Engineering

College of Engineering, University of Basrah

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

Copyright © 2025 College of Engineering, University of Basrah. All rights reserved, including those for text and data mining, AI training, and similar technologies.