This paper proposes a new design of compact coplanar waveguide (CPW) fed -super ultra-wideband (S-UWB) MIMO antenna with a bandwidth of 3.6 to 40 GHz. The proposed antenna is composed of two orthogonal sector-shape monopoles (SSM) antenna elements to perform polarization diversity. In addition, a matched L-shaped common ground element is attached for more efficient coupling. The FR-4 substrate of the structure with a size of 23 × 45 × 1.6 mm3 and a dielectric constant of 4.3 is considered. The proposed design is simulated by using CST Microwave Studio commercial software. The simulation shows that the antenna has low mutual coupling (|S21| < -20 dB) with |S11|<−10 dB, ranging from 3.6 to 40 GHz. Envelope correlation coefficient (ECC) is less than 0.008, diversity gain (DG) is more than 9.99, mean effective gain (MEG) is below - 3 dB and total active reflection coefficient (TARC) is less than -6 dB over the whole response band is reported. The proposed MIMO antenna is expected efficiently cover the broadest range of frequencies for contemporary communications applications.
This paper discusses the design and performance of a frequency reconfigurable antenna for Internet of Things (IoT) applications. The antenna is designed to operate on multiple frequency bands and be reconfigurable to adjust to different communication standards and environmental conditions. The antenna design consists of monopole with one PIN diode and 50Ωfeed line. By changing the states of the diode, the antenna can be reconfigured to operate in a dual-band mode and a wideband mode. The performance of the antenna was evaluated through simulation. The antenna demonstrated good impedance matching, acceptable gain, and stable radiation patterns across the different frequency bands. The antenna has compact dimensions of (26×19×1.6) mm3. It covers the frequency range 2.95 GHz -8.2 GHz, while the coverage of the dual- band mode is (2.7-3.8) GHz and (4.57-7.4) GHz. The peak gain is 1.57 dBi for the wideband mode with omnidirectional radiation pattern. On the other hand, the peak gain of the dual-band mode is 0.87 dBi at 3 GHz and 0.47 dBi at 6 GHz with an omnidirectional radiation pattern too.
In order to provide an efficient, low cost, and small size radiating structure that passes a certain frequency band with negligible amount of interference, the combination of filters and antennas is proposed to form a single element called filtenna. This paper presents a filtenna element with compact size that can radiates in the 5G mid-band frequency range (3.6-3.8 GHz) and perfectly rejects all the frequencies outside this range. The filtenna is composed of a printed circuit antenna that is terminated with a crescent shaped stub that is coupled electromagnetically with a miniaturized sharp band-pass filter. The simulation results show a filtenna reflection coefficient with a reduced value within the intended 5G band and with high values along the other unwanted frequencies. Moreover, the structure has an omnidirectional pattern with reasonable gain value within the band of interest, and this makes the antenna very suitable for portable 5G devices.