Iraqi Journal for Electrical and Electronic Engineering
Login
Iraqi Journal for Electrical and Electronic Engineering
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
    • Proofreading Service
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
  • About
    • About Journal
    • Aims and Scope
    • Editorial Team
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Abstracting and indexing
    • Announcements
    • Contact

Search Results for reactive-power

Article
Control Strategy of Reactive Power Sharing in an Islanded Microgrids

Ali Q. Almousawi, Ammar A. Aldair

Pages: 112-118

PDF Full Text
Abstract

Precise power sharing considered is necessary for the effective operation of an Autonomous microgrid with droop controller especially when the total loads change periodically. In this paper, reactive power sharing control strategy that employs central controller is proposed to enhance the accuracy of fundamental reactive power sharing in an islanded microgrid. Microgrid central controller is used as external loop requiring communications to facilitate the tuning of the output voltage of the inverter to achieve equal reactive power sharing dependent on reactive power load to control when the mismatch in voltage drops through the feeders. Even if central controller is disrupted the control strategy will still operate with conventional droop control method. additionally, based on the proposed strategy the reactive power sharing accuracy is immune to the time delay in the central controller. The developed of the proposed strategy are validated using simulation with detailed switching models in PSCAD/EMTDC.

Article
Reactive Power Contribution and Pricing for Restructured Power Industry

nan Susithra.M, nan Gnanadass.R

Pages: 60-69

PDF Full Text
Abstract

Competitive trend towards restructuring and unbundling of transmission services has resulted in the need renteto discover the impact of a particular generator to load. This paper initially presents the analysis of three diff reactive power valuation methods namely, Modified Y bus , Virtual flow approach and Modified Power flow tracing to compute the reactive power output from a particular generator to particular load. Among these methods, the modified power flow electricity tracing method is identified as the best because of its various features. Secondly, based on this Method, the opportunity cost for practical system is determined. Hence, this method can be useful in providing additional insight into power system operation and can be used to modify existing tariffs of charging for reactive power transmission loss and reactive power transmission services. Simulation and comparison results are shown by taking IEEE 30 bus system as test system.

Article
Reactive Power Optimization with Chaotic Firefly Algorithm and Particle Swarm Optimization in A Distribution Subsystem Network

Hamza Yapıcı Eregli Vocational School, Nurettin Çetinkaya

Pages: 71-78

PDF Full Text
Abstract

In this paper the minimization of power losses in a real distribution network have been described by solving reactive power optimization problem. The optimization has been performed and tested on Konya Eregli Distribution Network in Turkey, a section of Turkish electric distribution network managed by MEDAŞ (Meram Electricity Distribution Corporation). The network contains about 9 feeders, 1323 buses (including 0.4 kV, 15.8 kV and 31.5 kV buses) and 1311 transformers. This paper prefers a new Chaotic Firefly Algorithm (CFA) and Particle Swarm Optimization (PSO) for the power loss minimization in a real distribution network. The reactive power optimization problem is concluded with minimum active power losses by the optimal value of reactive power. The formulation contains detailed constraints including voltage limits and capacitor boundary. The simulation has been carried out with real data and results have been compared with Simulated Annealing (SA), standard Genetic Algorithm (SGA) and standard Firefly Algorithm (FA). The proposed method has been found the better results than the other algorithms.

Article
Automated Power Factor Correction for Smart Home

Bilal Naji Alhasnawi, Basil H.Jasim

Pages: 30-40

PDF Full Text
Abstract

In the current scenario, power factor has become an important concern in all industries. Poor power factor gives rise to many problems which result in financial loss of industries and also for the commercial users. The main concern of this work is to improve the usage of real power with respect to reactive power hence improving the power factor. Here we have used the technique of relay switching method with a capacitor so that any drop in power factor can be sensed by the controller and switch the capacitor as required. This will not only help to improve power factor but also demand of electricity supply on utility side will be reduced. The Significance of this work is to build an APFC (Automatic Power Factor Correction) Unit. The APFC appliance calculates the reactive power (KVAR) expended by a system’s load and compensates the lagging PF (power factor) utilizing capacitances from capacitor banks.

Article
Voltage Collapse Optimization for the Iraqi Extra High Voltage 400 kV Grid based on Particle Swarm Optimization

Wafaa Saeed, Layth Tawfeeq

Pages: 17-31

PDF Full Text
Abstract

The continuously ever-growing demand for the electrical power causing the continuous expansion and complexity of power systems, environmental and economic factors forcing the system to work near the critical limits of stability, so research's stability have become research areas worthy of attention in the resent day. The present work includes two phases: The first one is to determine the Voltage Stability Index for the more insensitive load bus to the voltage collapse in an interconnected power system using fast analyzed method based on separate voltage and current for PQ buses from these of PV buses, while the second phase is to suggested a simulated optimization technique for optimal voltage stability profile all around the power system. The optimization technique is used to adjust the control variables elements: Generator voltage magnitude, active power of PV buses, VAR of shunt capacitor banks and the position of transformers tap with satisfied the limit of the state variables (load voltages, generator reactive power and the active power of the slack bus). These control variables are main effect on the voltage stability profile to reach the peak prospect voltage stable loading with acceptable voltage profile. An optimized voltage collapse based on Particle Swarm Optimization has been tested on both of the IEEE 6 bus system and the Iraqi Extra High Voltage 400 kV Grid 28 bus . To ensure the effectiveness of the optimization technique a comparison between the stability indexes for load buses before and after technical application are presented. Simulation results have been executed using Matlab software). Keyword: Voltage Stability Indicator; voltage collapse; Stability of Extra High Voltage Grid; PSO optimization technique.

Article
Performance Analysis of Three-Phase Active Power Filter with Switched Mode Inverter

Mustafa M. Ibrahem, Jabbar R. Rashed

Pages: 76-92

PDF Full Text
Abstract

This paper presents a simplified control method for three-phase active power filter by calculating the required reactive and harmonics current of the load. The active power filter needs this current to correct the power factor and eliminate the generated harmonics by nonlinear loads. This method has the advantages of using only one current sensor and effectiveness in achieving the required compensation characteristics. The proposed circuit may be operate at frequencies ranging from 40 to 60 Hz, and it also responds very fast under sudden changes in the load conditions. The considered system is analyzed and a prototype is also developed and tested to demonstrate the performance of the implemented active power filter in the power factor improvement and harmonics elimination. Finally, predicted results are verified experimentally.

Article
Unified P-Q based STATCOM Control for Wind Driven Induction Generator

Ahmed A. A. Hafez a,b, R. M. Al-Bouthig, J. I. AL-Sadey

Pages: 10-17

PDF Full Text
Abstract

This paper principally advises a simple and reliable control for Static Synchronous Compensator (STATCOM) in a stand-alone wind driven self-excited induction generator power system. The control was proposed based on instantaneous P-Q theory. The advised control enjoys the merits of robustness, reliability and simplicity. The paper also proposes a dimensioning procedure for the STATCOM that involves advising an annotative analytical expression for sizing the DC-link capacitor. This procedure has the advantages of applicability for different reactive power compensators that depend on a separate DC-link in its operation. Comprehensive simulation results in Matlab environment were illustrated for corroborating the performance of the advised control under rigorous operating scenarios. The results show the feasibility, reliability and practicability of the proposed controller.

Article
A Study of the Optimal Allocation of Shunt Capacitor Based on Modified Loss Sensitivity Algorithm

Warid Sayel Warid, Emad Allawi Mohsin

Pages: 56-61

PDF Full Text
Abstract

Minimization of active power losses is one of the essential aims for any electric utility, due to its importance in improvement of system properties towards minimum production cost and to support increase load requirement. In this paper we have studied the possibility of reducing the value of real power losses for (IEEE-14- Bus bar) global system transmission lines by choosing the best location to install shunt capacitor depending on new algorithm for calculate the optimal allocation, which considering the value of real power losses derivative with injection reactive power as an indicator of the ability of reducing losses at load buses. The results show the validity of this method for application in electric power transmission lines.

Article
Voltage Sag, Voltage Swell and Harmonics Reduction Using Unified Power Quality Conditioner (UPQC) Under Nonlinear Loads

Ahmed Yahyia Qasim, Fadhil Rahma Tahir, Ahmed Nasser B. Alsammak

Pages: 140-150

PDF Full Text
Abstract

In light of the widespread usage of power electronics devices, power quality (PQ) has become an increasingly essential factor. Due to nonlinear characteristics, the power electronic devices produce harmonics and consume lag current from the utility. The UPQC is a device that compensates for harmonics and reactive power while also reducing problems related to voltage and current. In this work, a three-phase, three-wire UPQC is suggested to reduce voltage-sag, voltage-swell, voltage and current harmonics. The UPQC is composed of shunt and series Active Power Filters (APFs) that are controlled utilizing the Unit Vector Template Generation (UVTG) technique. Under nonlinear loads, the suggested UPQC system can be improved PQ at the point of common coupling (PCC) in power distribution networks. The simulation results show that UPQC reduces the effect of supply voltage changes and harmonic currents on the power line under nonlinear loads, where the Total Harmonic Distortion (THD) of load voltages and source currents obtained are less than 5%, according to the IEEE-519 standard.

Article
STATCOM for Dynamic Performance Optimization of Grid Connected Wind Power System

Ahmed AbdElmalek AbdElHafez, Jaber Ibrehaim AL-Sadey, Radwan Taha Al-Bouthigy

Pages: 66-74

PDF Full Text
Abstract

Large disturbances in an induction generator-based wind system necessitate rapid compensation for the reactive power. This article addresses the application of Static Synchronous Compensator (STATCOM) in optimizing the performance of grid connected wind power system. The functionality of the static synchronous compensator in maintaining system stability and reliability during/post diverse severe disturbances is thoroughly investigated. A design procedure for STATCOM, particularly the capacitor in the DC side was advised.

1 - 10 of 10 items

Search Parameters

Journal Logo
Iraqi Journal for Electrical and Electronic Engineering

College of Engineering, University of Basrah

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

Copyright © 2025 College of Engineering, University of Basrah. All rights reserved, including those for text and data mining, AI training, and similar technologies.