Iraqi Journal for Electrical and Electronic Engineering
Login
Iraqi Journal for Electrical and Electronic Engineering
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
    • Proofreading Service
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
  • About
    • About Journal
    • Aims and Scope
    • Editorial Team
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Abstracting and indexing
    • Announcements
    • Contact

Search Results for random-forest-learning

Article
Multiple Object Detection-Based Machine Learning Techniques

Athraa S. Hasan, Jianjun Yi, Haider M. AlSabbagh, Liwei Chen

Pages: 149-159

PDF Full Text
Abstract

Object detection has become faster and more precise due to improved computer vision systems. Many successful object detections have dramatically improved owing to the introduction of machine learning methods. This study incorporated cutting- edge methods for object detection to obtain high-quality results in a competitive timeframe comparable to human perception. Object-detecting systems often face poor performance issues. Therefore, this study proposed a comprehensive method to resolve the problem faced by the object detection method using six distinct machine learning approaches: stochastic gradient descent, logistic regression, random forest, decision trees, k-nearest neighbor, and naive Bayes. The system was trained using Common Objects in Context (COCO), the most challenging publicly available dataset. Notably, a yearly object detection challenge is held using COCO. The resulting technology is quick and precise, making it ideal for applications requiring an object detection accuracy of 97%.

1 - 1 of 1 items

Search Parameters

Journal Logo
Iraqi Journal for Electrical and Electronic Engineering

College of Engineering, University of Basrah

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

Copyright © 2025 College of Engineering, University of Basrah. All rights reserved, including those for text and data mining, AI training, and similar technologies.