Iraqi Journal for Electrical and Electronic Engineering
Login
Iraqi Journal for Electrical and Electronic Engineering
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
    • Proofreading Service
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
  • About
    • About Journal
    • Aims and Scope
    • Editorial Team
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Abstracting and indexing
    • Announcements
    • Contact

Search Results for power-control

Article
Solving the Near-Far Problem in Dynamic Frequency Hopping-Optical Code Division Multiple Access using Power Control

Wamidh J. M. ALgalbi

Pages: 88-93

PDF Full Text
Abstract

In this study, a distributed power control algorithm is proposed for Dynamic Frequency Hopping Optical-CDMA (DFH-OCDMA) system. In general, the DFH-OCDMA can support higher number of simultaneous users compared to other OCDMA techniques. However, the performance of such system degrades significantly as the received power does lower than its minimum threshold. This may obviously occur in a DFH-OCDMA network with near-far problem which consist of different fiber lengths among the users, that resulting to unequal power attenuation. The power misdistribution among simultaneous active users at the star coupler would degrade the Bit Error Rate (BER) performance for users whose transmitting signals with longer fiber lengths. In order to solve these problems, we propose an adaptive distributed power control technique for DFH-OCDMA to satisfy the target Signal to Noise Ratio (S to R) for all users. Taking into account the noise effects of Multiple Access Interference (MAI), Phase Induced Intensity oise (PII) and shot noise, the system can support 100% of users with power control as compared to 33% without power control when the initial transmitted power was -1dBm with 30 simultaneous users.

Article
Fuzzy Transmission Power Control Scheme for Maximizing Lifetime in Wireless Sensor Networks

Safaa Khudair Leabi, Turki Younis Abdalla

Pages: 174-182

PDF Full Text
Abstract

Energy limitations have become fundamental challenge for designing WSNs. Network lifetime is the most interested and important metric in WSNs. Many works have been developed for prolonging networks lifetime, in which one of the important work is the control of transmission power. This paper proposes a new fuzzy transmission power control technique that operate together with routing protocols for prolonging WSNs lifetime. Dijkstra shortest path routing is considered as the main routing protocol in this work. This paper mainly focuses on transmission power control scheme for prolonging WSNs lifetime. A performance comparison is depicted for maximum and controlled transmission power. Simulation results show an increase in network lifetime equals to 3.4776 for the proposed fuzzy control. The performance of the proposed fuzzy control technique involves a good improvement and contribution in the field of prolonging networks lifetime by using transmission power control.

Article
Regeneration Energy for Nonlinear Active Suspension System Using Electromagnetic Actuator

Ammar A. Aldair, Eman Badee Alsaedee

Pages: 113-125

PDF Full Text
Abstract

The main purpose of using the suspension system in vehicles is to prevent the road disturbance from being transmitted to the passengers. Therefore, a precise controller should be designed to improve the performances of suspension system. This paper presents a modeling and control of the nonlinear full vehicle active suspension system with passenger seat utilizing Fuzzy Model Reference Learning Control (FMRLC) technique. The components of the suspension system are: damper, spring and actuator, all of those components have nonlinear behavior, so that, nonlinear forces that are generated by those components should be taken into account when designed the control system. The designed controller consumes high power so that when the control system is used, the vehicle will consume high amount of fuel. It notes that, when vehicle is driven on a rough road; there will be a shock between the sprung mass and the unsprung mass. This mechanical power dissipates and converts into heat power by a damper. In this paper, the wasted power has reclaimed in a proper way by using electromagnetic actuator. The electromagnetic actuator converts the mechanical power into electrical power which can be used to drive the control system. Therefore, overall power consumption demand for the vehicle can be reduced. When the electromagnetic actuator is used three main advantages can be obtained: firstly, fuel consumption by the vehicle is decreased, secondly, the harmful emission is decreases, therefore, our environment is protected, and thirdly, the performance of the suspension system is improved as shown in the obtained results.

Article
On the Performance of Wireless-Powered NOMA Communication Networks

Noor K. Breesam, Walid A. Al-Hussaibi, Falah H. Ali

Pages: 160-169

PDF Full Text
Abstract

In different modern and future wireless communication networks, a large number of low-power user equipment (UE) devices like Internet of Things, sensor terminals, and smart modules have to be supported over constrained power and bandwidth resources. Therefore, wireless-powered communication (WPC) is considered a promising technology for varied applications in which the energy harvesting (EH) from radio frequency radiations is exploited for data transmission. This requires efficient resource allocation schemes to optimize the performance of WPC and prolong the network lifetime. In this paper, harvest-then-transmit-based WP non-orthogonal multiple access (WP-NOMA) system is designed with time-split (TS) and power control (PC) allocation strategies. To evaluate the network performance, the sum rate and UEs’ rates expressions are derived considering power-domain NOMA with successive interference cancellation detection. For comparison purposes, the rate performance of the conventional WP orthogonal multiple access (WP-OMA) is derived also considering orthogonal frequency-division multiple access and time-division multiple access schemes. Intensive investigations are conducted to obtain the best TS and PC resource parameters that enable maximum EH for higher data transmission rates compared with the reference WP-OMA techniques. The achieved outcomes demonstrate the effectiveness of designed resource allocation approaches in terms of the realized sum rate, UE’s rate, rate region, and fairness without distressing the restricted power of far UEs.

Article
Distribution Networks Reconfiguration for Power Loss Reduction and Voltage Profile Improvement Using Hybrid TLBO-BH Algorithm

Arsalan Hadaeghi, Ahmadreza Abdollahi Chirani

Pages: 12-20

PDF Full Text
Abstract

In this paper, a new method based on the combination of the Teaching-learning-based-optimization (TLBO) and Black-hole (BH) algorithm has been proposed for the reconfiguration of distribution networks in order to reduce active power losses and improve voltage profile in the presence of distributed generation sources. The proposed method is applied to the IEEE 33-bus radial distribution system. The results show that the proposed method can be a very promising potential method for solving the reconfiguration problem in distribution systems and has a significant effect on loss reduction and voltage profile improvement.

Article
Control Strategy of Reactive Power Sharing in an Islanded Microgrids

Ali Q. Almousawi, Ammar A. Aldair

Pages: 112-118

PDF Full Text
Abstract

Precise power sharing considered is necessary for the effective operation of an Autonomous microgrid with droop controller especially when the total loads change periodically. In this paper, reactive power sharing control strategy that employs central controller is proposed to enhance the accuracy of fundamental reactive power sharing in an islanded microgrid. Microgrid central controller is used as external loop requiring communications to facilitate the tuning of the output voltage of the inverter to achieve equal reactive power sharing dependent on reactive power load to control when the mismatch in voltage drops through the feeders. Even if central controller is disrupted the control strategy will still operate with conventional droop control method. additionally, based on the proposed strategy the reactive power sharing accuracy is immune to the time delay in the central controller. The developed of the proposed strategy are validated using simulation with detailed switching models in PSCAD/EMTDC.

1 - 6 of 6 items

Search Parameters

Journal Logo
Iraqi Journal for Electrical and Electronic Engineering

College of Engineering, University of Basrah

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

Copyright © 2025 College of Engineering, University of Basrah. All rights reserved, including those for text and data mining, AI training, and similar technologies.