Control of Induction Motor (IM) is well known to be difficult owing to the fact the models of IM are highly nonlinear and time variant. In this paper, to achieve accurate control performance of rotor position control of IM, a new method is proposed by using adaptive inverse control (AIC) technique. In recent years, AIC is a very vivid field because of its advantages. It is quite different from the traditional control. AIC is actually an open loop control scheme and so in the AIC the instability problem cased by feedback control is avoided and the better dynamic performances can also be achieved. The model of IM is identified using adaptive filter as well as the inverse model of the IM, which was used as a controller. The significant of using the inverse of the IM dynamic as a controller is to makes the IM output response to converge to the reference input signal. To validate the performances of the proposed new control scheme, we provided a series of simulation results.
This paper present an adaptation mechanism for fuzzy logic controller FLC in order to perfect the response performance against small rotation angles of real D.C. motor with unknown parameters. A supervisor fuzzy controller SFC is designed to continuously adjust, on-line, the universe of discourse UOD of the basic fuzzy controller BFC input variables based on position error and change of position error. Performance of the proposed adaptive fuzzy controller is compared with corresponding conventional FLC in terms of several performance measures such rise time, settling time, peak overshoot, and steady state error. The system design and implementation are carried out using LabVIEW 2009 with NI PCI-6251 data acquisition DAQ card. The practical results demonstrate using self tuning FLC scheme grant a better performance as compared with conventional FLC which is incapable of rotating a motor if the rotation angle is being small.
PID controller is the most popular controller in many applications because of many advantages such as its high efficiency, low cost, and simple structure. But the main challenge is how the user can find the optimal values for its parameters. There are many intelligent methods are proposed to find the optimal values for the PID parameters, like neural networks, genetic algorithm, Ant colony and so on. In this work, the PID controllers are used in three different layers for generating suitable control signals for controlling the position of the UAV (x,y and z), the orientation of UAV (θ, Ø and ψ) and for the motors of the quadrotor to make it more stable and efficient for doing its mission. The particle swarm optimization (PSO) algorithm is proposed in this work. The PSO algorithm is applied to tune the parameters of proposed PID controllers for the three layers to optimize the performances of the controlled system with and without existences of disturbance to show how the designed controller will be robust. The proposed controllers are used to control UAV, and the MATLAB 2018b is used to simulate the controlled system. The simulation results show that, the proposed controllers structure for the quadrotor improve the performance of the UAV and enhance its stability.