Iraqi Journal for Electrical and Electronic Engineering
Login
Iraqi Journal for Electrical and Electronic Engineering
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
    • Proofreading Service
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
  • About
    • About Journal
    • Aims and Scope
    • Editorial Team
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Abstracting and indexing
    • Announcements
    • Contact

Search Results for plc

Article
PLC/HMI Based Portable Workbench for PLC and Digital Logic Learning and Application Development

Jawad Radhi Mahmood, Ramzy Salim Ali

Pages: 83-96

PDF Full Text
Abstract

A Programmable logic controller (PLC) uses the digital logic circuits and their operating concepts in its hardware structure and its programming instructions and algorithms. Therefore, the deep understanding of these two items is staple for the development of control applications using the PLC. This target is only possible through the practical sensing of the various components or instructions of these two items and their applications. In this work, a user-friendly and re-configurable ladder, digital logic learning and application development design and testing platform has been designed and implemented using a Programmable Logic Controller (PLC), Human Machine Interface panel (HMI), four magnetic contactors, one Single-phase power line controller and one Variable Frequency Drive (VFD) unit. The PLC role is to implement the ladder and digital logic functions. The HMI role is to establish the virtual circuit wiring and also to drive and monitor the developed application in real time mode of application. The magnetic contactors are to play the role of industrial field actuators or to link the developed application control circuit to another field actuator like three phase induction motor. The Single -phase power line controller is to support an application like that of the soft starter. The VFD is to support induction motor driven applications like that of cut-to-length process in which steel coils are uncoiled and passed through cutting blade to be cut into required lengths. The proposed platform has been tested through the development of 14 application examples. The test results proved the validity of the proposed platform.

Article
Liquid Mixing Enhancement by PLC-Based Chaotic Dynamics Implementation

Hamzah Abdulkareem, Fadhil Rahma, Jawad Radhi

Pages: 10-20

PDF Full Text
Abstract

In this paper, we present a new programmable chaotic circuit based on the dynamical chaotic system introduced by E. Lorenz. The design and realization of the model are accomplished by using a programmable logic controller (PLC). The system can be modeled and realized with a structured texted. The nonlinear differential equations of Lorenz model are solved numerically. The generated chaotic signal by using PLC is applied to a single- phase induction motor via a variable frequency drive to create a chaotic perturbation in the experiments of liquid mixing. Colorization liquid experiments shows that the generated chaotic motion effectively makes an enhancement of the mixing process in the stirred-tank mixer model in our laboratory.

Article
PLC-HMI BASED SIMULATION of PV CELL and ARRAY BEHAVIOR

Maytham Ali Fadhil, Jawad Radhi Mahmood

Pages: 130-137

PDF Full Text
Abstract

This paper presents the PLC-HMI based simulation of electrical-based PV cell/array model in laboratory platform to give the opportunity to students and users who haven't clear knowledge to study PV cell and array behavior with respect to change of environment conditions and electrical parameters. This simulation process covers the cell models under ideal and non-ideal ones. In non-ideal one, the series resistance and the shunt resistance are covered.

Article
Design and Implementation of Wireless 4-20 mA Current Simulator

Ali F. Halihal Nassiriyah

Pages: 155-163

PDF Full Text
Abstract

This paper presents new device to simulate and inject a 4-20 mA current signal to PLC and control on this signal wirelessly. The proposed simulator device has been designed and implemented by a PIC 18f4520 microcontroller and an Ethernet click. This device is connected to Wireless Local Area Network (WLAN) via Wi-Fi router using TCP/IP protocol. The simulator has two channels for 4-20 mA current output signals with two channels for digital output signals, controlled by a laptop or a smart mobile. The purpose of this work is to demonstrate the usefulness of the Wi-Fi wireless technology for remote controlling on the 4-20 mA output current signal and the digital output signal in the designed simulator device. The experiments indicate that the proposed wireless simulator outputs the 4- 20 mA current with high accuracy and very fast response. The experiments also indicate that the proposed wireless simulator is easy, comfortable and convenient practically to use in the test operations of protections, interlocks and integrity of analog input channels for PLC compared to the wired simulator.

Article
Fuzzy Logic Controller Based DVR For Power Quality Improvement under Different Power Disturbances with Non-Linear Loads

Abdul-Jabbar Fathel Ali, Wael Hussein Zayer, Samhar Saeed Shukir

Pages: 50-60

PDF Full Text
Abstract

The power quality problems can be defined as the difference between the quality of power supplied and the quality of power required. Recently a large interest has been focused on a power quality domain due to: disturbances caused by non-linear loads and Increase in number of electronic devices. Power quality measures the fitness of the electric power transmitted from generation to industrial, domestic and commercial consumers. At least 50% of power quality problems are of voltage quality type. Voltage sag is the serious power quality issues for the electric power industry and leads to the damage of sensitive equipments like, computers, programmable logic controller (PLC), adjustable speed drives (ADS). The prime goal of this paper is to investigate the performance of the Fuzzy Logic controller based DVR in reduction the power disturbances to restore the load voltage to the nominal value and reduce the THD to a permissible value which is 5% for the system less than 69Kv. The modeling and simulation of a power distribution system have been achieved using MATLABL/Simulink. Different faults conditions and power disturbances with linear and non-linear loads are created with the proposed system, which are initiated at a duration of 0.8sec and kept till 0.95sec.

1 - 5 of 5 items

Search Parameters

Journal Logo
Iraqi Journal for Electrical and Electronic Engineering

College of Engineering, University of Basrah

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

Copyright © 2025 College of Engineering, University of Basrah. All rights reserved, including those for text and data mining, AI training, and similar technologies.