Iraqi Journal for Electrical and Electronic Engineering
Login
Iraqi Journal for Electrical and Electronic Engineering
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
    • Proofreading Service
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
  • About
    • About Journal
    • Aims and Scope
    • Editorial Team
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Abstracting and indexing
    • Announcements
    • Contact

Search Results for pitting-corrosion

Article
A New Algorithm Based on Pitting Corrosion for Engineering Design Optimization Problems

Hussien A. Al-mtory, Falih M. Alnahwi, Ramzy S. Ali

Pages: 190-206

PDF Full Text
Abstract

This paper presents a new optimization algorithm called corrosion diffusion optimization algorithm (CDOA). The proposed algorithm is based on the diffusion behavior of the pitting corrosion on the metal surface. CDOA utilizes the oxidation and reduction electrochemical reductions as well as the mathematical model of Gibbs free energy in its searching for the optimal solution of a certain problem. Unlike other algorithms, CDOA has the advantage of dispensing any parameter that need to be set for improving the convergence toward the optimal solution. The superiority of the proposed algorithm over the others is highlighted by applying them on some unimodal and multimodal benchmark functions. The results show that CDOA has better performance than the other algorithms in solving the unimodal equations regardless the dimension of the variable. On the other hand, CDOA provides the best multimodal optimization solution for dimensions less than or equal to (5, 10, 15, up to 20) but it fails in solving this type of equations for variable dimensions larger than 20. Moreover, the algorithm is also applied on two engineering application problems, namely the PID controller and the cantilever beam to accentuate its high performance in solving the engineering problems. The proposed algorithm results in minimized values for the settling time, rise time, and overshoot for the PID controller. Where the rise time, settling time, and maximum overshoot are reduced in the second order system to 0.0099, 0.0175 and 0.005 sec., in the fourth order system to 0.0129, 0.0129 and 0 sec, in the fifth order system to 0.2339, 0.7756 and 0, in the fourth system which contains time delays to 1.5683, 2.7102 and 1.80 E-4 sec., and in the simple mass-damper system to 0.403, 0.628 and 0 sec., respectively. In addition, it provides the best fitness function for the cantilever beam problem compared with some other well-known algorithms.

1 - 1 of 1 items

Search Parameters

Journal Logo
Iraqi Journal for Electrical and Electronic Engineering

College of Engineering, University of Basrah

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

Copyright © 2025 College of Engineering, University of Basrah. All rights reserved, including those for text and data mining, AI training, and similar technologies.