Iraqi Journal for Electrical and Electronic Engineering
Login
Iraqi Journal for Electrical and Electronic Engineering
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
    • Proofreading Service
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
  • About
    • About Journal
    • Aims and Scope
    • Editorial Team
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Abstracting and indexing
    • Announcements
    • Contact

Search Results for pid-controllers

Article
Learning the Quadruped Robot by Reinforcement Learning (RL)

A. A. Issa, A. A. Aldair

Pages: 117-126

PDF Full Text
Abstract

In this paper, a simulation was utilized to create and test the suggested controller and to investigate the ability of a quadruped robot based on the SimScape-Multibody toolbox, with PID controllers and deep deterministic policy gradient DDPG Reinforcement learning (RL) techniques. A quadruped robot has been simulated using three different scenarios based on two methods to control its movement, namely PID and DDPG. Instead of using two links per leg, the quadruped robot was constructed with three links per leg, to maximize movement versatility. The quadruped robot-built architecture uses twelve servomotors, three per leg, and 12-PID controllers in total for each servomotor. By utilizing the SimScape-Multibody toolbox, the quadruped robot can build without needing to use the mathematical model. By varying the walking robot's carrying load, the robustness of the developed controller is investigated. Firstly, the walking robot is designed with an open loop system and the result shows that the robot falls at starting of the simulation. Secondly, auto-tuning are used to find the optimal parameter like (KP, KI and KD) of PID controllers and resulting shows the robot can walk in a straight line. Finally, DDPG reinforcement learning is proposed to generate and improve the walking motion of the quadruped robot, and the results show that the behaviour of the walking robot has been improved compared with the previous cases, Also, the results produced when RL is employed instead of PID controllers are better.

Article
Chaos Algorithm versus Traditional and Optimal Approaches for Regulating Line Frequency of Steam Power System

Ahmed A. AbdElhafez, Ali M. Yosuf

Pages: 120-126

PDF Full Text
Abstract

Load Frequency Control (LFC) is a basic control strategy for proper operation of the power system. It ensures the ability of each generator in regulating its output power in such way to maintain system frequency and tie-line power of the interconnected system at prescribed levels. This article introduces comprehensive comparative study between Chaos Optimization Algorithm (COA) and optimal control approaches, such as Linear Quadratic Regulator (LQR), and Optimal Pole Shifting (OPS) regarding the tuning of LFC controller. The comparison is extended to the control approaches that result in zero steady-state frequency error such as Proportional Integral (PI) and Proportional Integral Derivative (PID) controllers. Ziegler-Nicholas method is widely adopted for tuning such controllers. The article then compares between PI and PID controllers tuned via Ziegler-Nicholas and COA. The optimal control approaches as LQR and OPS have the characteristic of steady-state error. Moreover, they require the access for full state variables. This limits their applicability. Whereas, Ziegler-Nicholas PI and PID controllers have relatively long settling time and high overshoot. The controllers tuned via COA remedy the defects of optimal and zero steady-state controllers. The performance adequacy of the proposed controllers is assessed for different operating scenarios. Matlab and its dynamic platform, Simulink, are used for stimulating the system under concern and the investigated control techniques. The simulation results revealed that COA results in the smallest settling time and overshoot compared with traditional controllers and zero steady-state error controllers. In the overshoot, COA produces around 80% less than LQR and 98.5% less than OPS, while in the settling time, COA produces around 81% less than LQR and 95% less than OPS. Moreover, COA produces the lowest steady-state frequency error. For Ziegler-Nicholas controllers, COA produces around 53% less in the overshoot and 42% less in the settling time.

Article
Design Tunable Robust Controllers for Unmanned Aerial Vehicle Based on Particle Swarm Optimization Algorithm

Baqir Nasser Abdul- Samed 1, Ammar A. Aldair

Pages: 89-100

PDF Full Text
Abstract

PID controller is the most popular controller in many applications because of many advantages such as its high efficiency, low cost, and simple structure. But the main challenge is how the user can find the optimal values for its parameters. There are many intelligent methods are proposed to find the optimal values for the PID parameters, like neural networks, genetic algorithm, Ant colony and so on. In this work, the PID controllers are used in three different layers for generating suitable control signals for controlling the position of the UAV (x,y and z), the orientation of UAV (θ, Ø and ψ) and for the motors of the quadrotor to make it more stable and efficient for doing its mission. The particle swarm optimization (PSO) algorithm is proposed in this work. The PSO algorithm is applied to tune the parameters of proposed PID controllers for the three layers to optimize the performances of the controlled system with and without existences of disturbance to show how the designed controller will be robust. The proposed controllers are used to control UAV, and the MATLAB 2018b is used to simulate the controlled system. The simulation results show that, the proposed controllers structure for the quadrotor improve the performance of the UAV and enhance its stability.

Article
Designing robust Mixed H /H PID Controllers based Intelligent Genetic Algorithm

Ramzy S. Ali Al-Waily, Ali Abdullah K. Al-Thuwainy

Pages: 25-34

PDF Full Text
Abstract

It's not easy to implement the mixed / optimal controller for high order system, since in the conventional mixed / optimal feedback the order of the controller is much than that of the plant. This difficulty had been solved by using the structured specified PID controller. The merit of PID controllers comes from its simple structure, and can meets the industry processes. Also it have some kind of robustness. Even that it's hard to PID to cope the complex control problems such as the uncertainty and the disturbance effects. The present ideas suggests combining some of model control theories with the PID controller to achieve the complicated control problems. One of these ideas is presented in this paper by tuning the PID parameters to achieve the mixed / optimal performance by using Intelligent Genetic Algorithm (IGA). A simple modification is added to IGA in this paper to speed up the optimization search process. Two MIMO example are used during investigation in this paper. Each one of them has different control problem.

Article
Improving the Dynamic Response of Half-Car Model using Modified PID Controller

Mustafa Mohammed Matrood, Ameen Ahmed Nassar

Pages: 54-61

PDF Full Text
Abstract

This paper focuses on the vibration suppression of a half-car model by using a modified PID controller. Mostly, car vibrations could result from some road disturbances, such as bumps or potholes transmitted to a car body. The proposed controller consists of three main components as in the case of the conventional PID controller which are (Proportional, Integral, and Derivative) but the difference is in the positions of these components in the control loop system. Initially, a linear half-car suspension system is modeled in two forms passive and active, the activation process occurred using a controlled hydraulic actuator. Thereafter, the two systems have been simulated using MATLAB/Simulink software in order to demonstrate the dynamic response. A comparison between conventional and modified PID controllers has been carried out. The resulting dynamic response of the half-car model obtained from the simulation process was improved when using a modified PID controller compared with the conventional PID controller. Moreover, the efficiency and performance of the half-car model suspension have been significantly enhanced by using the proposed controller. Thus, achieving high vehicle stability and ride comfort.

Article
Speed Control of BLDC Motor Based on Recurrent Wavelet Neural Network

Adel A. Obed, Ameer L. Saleh

Pages: 118-129

PDF Full Text
Abstract

In recent years, artificial intelligence techniques such as wavelet neural network have been applied to control the speed of the BLDC motor drive. The BLDC motor is a multivariable and nonlinear system due to variations in stator resistance and moment of inertia. Therefore, it is not easy to obtain a good performance by applying conventional PID controller. The Recurrent Wavelet Neural Network (RWNN) is proposed, in this paper, with PID controller in parallel to produce a modified controller called RWNN-PID controller, which combines the capability of the artificial neural networks for learning from the BLDC motor drive and the capability of wavelet decomposition for identification and control of dynamic system and also having the ability of self-learning and self-adapting. The proposed controller is applied for controlling the speed of BLDC motor which provides a better performance than using conventional controllers with a wide range of speed. The parameters of the proposed controller are optimized using Particle Swarm Optimization (PSO) algorithm. The BLDC motor drive with RWNN-PID controller through simulation results proves a better in the performance and stability compared with using conventional PID and classical WNN-PID controllers.

1 - 6 of 6 items

Search Parameters

Journal Logo
Iraqi Journal for Electrical and Electronic Engineering

College of Engineering, University of Basrah

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

Copyright © 2025 College of Engineering, University of Basrah. All rights reserved, including those for text and data mining, AI training, and similar technologies.