In this paper, we consider robust control of nonlinear systems, via inclusion nonlinear systems solution and $H_{\infty}$ controller using singular perturbation method. First, using a technique for solving inclusion nonlinear systems, we transform the nonlinear system to an ordinary nonlinear system. Then using normal form equations, we eliminate the nonlinear part of the system matrix of equations of the system and transform it to a linear diagonal form. Separating new equations into slow and fast subsystems, due to the singular perturbation method and with the assumption of norm-boundedness of the fast dynamics, we can treat them as disturbance and design an $H_{\infty}$ controller for a system with a lower order than the original one that stabilizes the overall closed loop system. The proposed method is applied to a nominal system.
The control problem for a class of a nonlinear systems that contain the coupling of unmeasured states and unknown parameters is addressed. The system actuation is assumed to suffer from unknown dead zone nonlinearity. The parameters bounds of the unknown dead zone to be considered are unknown. Adaptive sliding mode controller, unmeasured states observer, and unknown parameters estimators are suggested such that global stability is achieved. Simulation for a single link mechanical system with unknown dead zone and friction torque is implemented for proving the efficacy of the suggested scheme.
This review article puts forward the phenomena of chaotic oscillation in electrical power systems. The aim is to present some short summaries written by distinguished researchers in the field of chaotic oscillation in power systems. The reviewed papers are classified according to the phenomena that cause the chaotic oscillations in electrical power systems. Modern electrical power systems are evolving day by day from small networks toward large-scale grids. Electrical power systems are constituted of multiple inter-linked together elements, such as synchronous generators, transformers, transmission lines, linear and nonlinear loads, and many other devices. Most of these components are inherently nonlinear in nature rendering the whole electrical power system as a complex nonlinear network. Nonlinear systems can evolve very complex dynamics such as static and dynamic bifurcations and may also behave chaotically. Chaos in electrical power systems is very unwanted as it can drive system bus voltage to instability and can lead to voltage collapse and ultimately cause a general blackout.
This paper deals with the application of Fuzzy-Neural Networks (FNNs) in multi-machine system control applied on hot steel rolling. The electrical drives that used in rolling system are a set of three-phase induction motors (IM) controlled by indirect field-oriented control (IFO). The fundamental goal of this type of control is to eliminate the coupling influence though the coordinate transformation in order to make the AC motor behaves like a separately excited DC motor. Then use Fuzzy-Neural Network in control the IM speed and the rolling plant. In this work MATLAB/SIMULINK models are proposed and implemented for the entire structures. Simulation results are presented to verify the effectiveness of the proposed control schemes. It is found that the proposed system is robust in that it eliminates the disturbances considerably.