In this work, the phase lock loop PLL-based controller has been adopted for tracking the resonant frequency to achieve maximum power transfer between the power source and the resonant load. The soft switching approach has been obtained to reduce switching losses and improve the overall efficiency of the induction heating system. The jury’s stability test has been used to evaluate the system’s stability. In this article, a multilevel inverter has been used with a series resonant load for an induction heating system to clarify the effectiveness of using it over the conventional full-bridge inverter used for induction heating purposes. Reduced switches five-level inverter has been implemented to minimize switching losses, the number of drive circuits, and the control circuit’s complexity. A comparison has been made between the conventional induction heating system with full bridge inverter and the induction heating system with five level inverter in terms of overall efficiency and total harmonic distortion THD. MATLAB/ SIMULINK has been used for modeling and analysis. The mathematical analysis associated with simulation results shows that the proposed topology and control system performs well.
This paper addressed the design of online uninterruptible power supply (UPS) system with a low frequency transformer for isolation, based on given specifications which include bypass switch and battery and taken into account the concentrated on open loop operation. Depending on the application, the online UPS system is composed by two stage conversions of AC/DC and DC/AC, the enclosure of these freeloading effects of all components and devices is very important to design the UPS system for acceptable performance. The initial stage of the design is based on the theoretical calculations and few assumptions have been made throughout the design. Simulation work has been carried out by MATLAB/Simulink program to validate the operation of the online UPS system with low frequency transformer isolation. The analysis of the results are presented and the justifications with regards to performance evaluation parameters which some are not satisfied the design specifications are discussed in details.