Hybrid electric vehicles have received considerable attention because of their ability to improve fuel consumption compared to conventional vehicles. In this paper, a series-parallel hybrid electric vehicle is used because they combine the advantages of the other two configurations. In this paper, the control unit for a series-parallel hybrid electric vehicle is implemented using a Nonlinear Model Predictive Control (NMPC) strategy. The NMPC strategy needs to create a vehicle energy management optimization problem, which consists of the cost function and its constraints. The cost function describes the required control objectives, which are to improve fuel consumption and obtain a good dynamic response to the required speed while maintaining a stable value of the state of charge (SOC) for batteries. While the cost function is subject to the physical constraints and the mathematical prediction model that evaluate vehicle's behavior based on the current vehicle measurements. The optimization problem is solved at each sampling step using the (SQP) algorithm to obtain the optimum operating points of the vehicle's energy converters, which are represented by the torque of the vehicle components.
In this paper, explicit model predictive controller is applied to an inverted pendulum apparatus. Explicit solutions to constrained linear model predictive controller can be computed by solving multi-parametric quadratic programs. The solution is a piecewise affine function, which can be evaluated at each sample to obtain the optimal control law. The on-line computation effort is restricted to a table-lookup. This admits implementation on low cost hardware at high sampling frequencies in real-time systems with high reliability and low software complexity. This is useful for systems with limited power and CPU resources.
In this paper, enhancing dynamic performance in power systems through load frequency control (LFC) is explored across diverse operating scenarios. A new Neural Network Model Predictive Controller (NN-MPC) specifically tailored for two-zone load frequency power systems is presented. ” Make your paper more scientific. The NN-MPC marries the predictive accuracy of neural networks with the robust capabilities of model predictive control, employing the nonlinear Levenberg-Marquardt method for optimization. Utilizing local area error deviation as feedback, the proposed controller’s efficacy is tested against a spectrum of operational conditions and systemic variations. Comparative simulations with a Fuzzy Logic Controller (FLC) reveal the proposed NN-MPC’s superior performance, underscoring its potential as a formidable solution in power system regulation.
This paper applied an artificial intelligence technique to control Variable Speed in a wind generator system. One of these techniques is an offline Artificial Neural Network (ANN-based system identification methodology, and applied conventional proportional-integral-derivative (PID) controller). ANN-based model predictive (MPC) and remarks linearization (NARMA-L2) controllers are designed, and employed to manipulate Variable Speed in the wind technological knowledge system. All parameters of controllers are set up by the necessities of the controller's design. The effects show a neural local (NARMA-L2) can attribute even higher than PID. The settling time, upward jab time, and most overshoot of the response of NARMA-L2 is a notable deal an awful lot less than the corresponding factors for the accepted PID controller. The conclusion from this paper can be to utilize synthetic neural networks of industrial elements and sturdy manageable to be viewed as a dependable desire to normal modeling, simulation, and manipulation methodologies. The model developed in this paper can be used offline to structure and manufacturing points of conditions monitoring, faults detection, and troubles shooting for wind generation systems.
A Matlab/Simulink model for the Finite Control Set Model Predictive current Control FCS-MPC based on cost function optimization, with current limit constraints for four-leg VSI is presented in this paper, as a new control algorithm. The algorithm selects the switching states that produce minimum error between the reference currents and the predicted currents via optimization process, and apply the corresponding switching control signals to the inverter switches. The new algorithm also implements current constraints which excludes any switching state that produces currents above the desired references. Therefore, the system response is enhanced since there is no overshoots or deviations from references. Comparison is made between the Space Vector Pulse Width Modulation SVPWM and the FCS-MPC control strategies for the same load conditions. The results show the superiority of the new control strategy with observed reduction in inverter output voltage THD by 10% which makes the FCS-MPC strategy more preferable for loads that requires less harmonics distortion.