In this paper, fuzzy Petri Net controller is used for Quadrotor system. The fuzzy Petrinet controller is arranged in the velocity PID form. The optimal values for the fuzzy Petri Net controller parameters have been achieved by using particle swarm optimization algorithm. In this paper, the reference trajectory is obtained from a reference model that can be designed to have the ideal required response of the Quadrotor, also using the quadrotor equations to find decoupling controller is first designed to reduce the effect of coupling between different inputs and outputs of quadrotor. The system performance has been measured by MATLAB. Simulation results showed that the FPN controller has a reasonable robustness against disturbances and good dynamic performance.
A wireless sensor network consists of spatially distributed autonomous sensors to cooperatively monitor physical or environmental conditions, such as temperature, sound, vibration, pressure, motion or pollutants. Different approaches have used for simulation and modeling of SN (Sensor Network) and WSN. Traditional approaches consist of various simulation tools based on different languages such as C, C++ and Java. In this paper, MATLAB (7.6) Simulink was used to build a complete WSN system. Simulation procedure includes building the hardware architecture of the transmitting nodes, modeling both the communication channel and the receiving master node architecture. Bluetooth was chosen to undertake the physical layer communication with respect to different channel parameters (i.e., Signal to Noise ratio, Attenuation and Interference). The simulation model was examined using different topologies under various conditions and numerous results were collected. This new simulation methodology proves the ability of the Simulink MATLAB to be a useful and flexible approach to study the effect of different physical layer parameters on the performance of wireless sensor networks.
Power transformer protective relay should block the tripping during magnetizing inrush and rapidly operate the tripping during internal faults. Recently, the frequency environment of power system has been made more complicated and the quantity of 2nd frequency component in inrush state has been decreased because of the improvement of core steel. And then, traditional approaches will likely be maloperated in the case of magnetizing inrush with low second harmonic component and internal faults with high second harmonic component. This paper proposes a new relaying algorithm to enhance the fault detection sensitivities of conventional techniques by using a fuzzy logic approach. The proposed fuzzy-based relaying algorithm consists of flux-differential current derivative curve, harmonic restraint, and percentage differential characteristic curve. The proposed relaying was tested with MATLAB simulation software and showed a fast and accurate trip operation.