Iraqi Journal for Electrical and Electronic Engineering
Login
Iraqi Journal for Electrical and Electronic Engineering
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
    • Proofreading Service
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
  • About
    • About Journal
    • Aims and Scope
    • Editorial Team
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Abstracting and indexing
    • Announcements
    • Contact

Search Results for low-density-parity-check-code-

Article
Performance of Sparse Code Multiple Access Communication System Based on Logarithmic Message Passing Algorithm and Low-Density Parity Check Code

Mustafa Moafaq, Maher Al-Azawi

Pages: 251-264

PDF Full Text
Abstract

The performance of Sparse Code Multiple Access (SCMA) communication system with Logarithmic Message Passing Algorithm (log-MPA) decoder is introduced. To boost the performance, a Low-Density Parity-Check Code LDPC is used together with Belief Propagation (BP) decoder. LDPC is chosen due to its sparsity property that complements the sparsity nature of SCMA for maximum efficiency and minimum complexity. Three distinct SCMA configurations are used. These are: A (4 x 4 x 6), B (4 x 16 x 6), and C (5 x 4 x 10) where the (K x M x V) are numbers of resources, codewords and users respectively. The performance of these configuration is shown in various channel conditions, various LDPC code rates and various numbers of SCMA iterations (NSCMA), to find the local minimum value of log-MPA. Simulation results showed that the LDPC greatly boosted the performance in mentioned configurations: In A configuration, a gain of 13 dB was observed. Configuration B experienced a substantial improvement of 23.5 dB, while C achieved a gain of 20.5 dB. Notably, configuration B stood out with the highest gain, attributed to LDPC’s exceptional performance with high data rates, as the data transmitted in B was double that of A.

1 - 1 of 1 items

Search Parameters

Journal Logo
Iraqi Journal for Electrical and Electronic Engineering

College of Engineering, University of Basrah

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

Copyright © 2025 College of Engineering, University of Basrah. All rights reserved, including those for text and data mining, AI training, and similar technologies.