Iraqi Journal for Electrical and Electronic Engineering
Login
Iraqi Journal for Electrical and Electronic Engineering
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
    • Proofreading Service
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
  • About
    • About Journal
    • Aims and Scope
    • Editorial Team
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Abstracting and indexing
    • Announcements
    • Contact

Search Results for lorenz-system

Article
Liquid Mixing Enhancement by PLC-Based Chaotic Dynamics Implementation

Hamzah Abdulkareem, Fadhil Rahma, Jawad Radhi

Pages: 10-20

PDF Full Text
Abstract

In this paper, we present a new programmable chaotic circuit based on the dynamical chaotic system introduced by E. Lorenz. The design and realization of the model are accomplished by using a programmable logic controller (PLC). The system can be modeled and realized with a structured texted. The nonlinear differential equations of Lorenz model are solved numerically. The generated chaotic signal by using PLC is applied to a single- phase induction motor via a variable frequency drive to create a chaotic perturbation in the experiments of liquid mixing. Colorization liquid experiments shows that the generated chaotic motion effectively makes an enhancement of the mixing process in the stirred-tank mixer model in our laboratory.

Article
Design and FPGA Implementation of a Hyper-Chaotic System for Real-time Secure Image Transmission

Abdul-Basset A. Al-Hussein, Fadhil Rahma Tahir, Ghaida A. Al-Suhail

Pages: 55-68

PDF Full Text
Abstract

Recently, chaos theory has been widely used in multimedia and digital communications due to its unique properties that can enhance security, data compression, and signal processing. It plays a significant role in securing digital images and protecting sensitive visual information from unauthorized access, tampering, and interception. In this regard, chaotic signals are used in image encryption to empower the security; that’s because chaotic systems are characterized by their sensitivity to initial conditions, and their unpredictable and seemingly random behavior. In particular, hyper-chaotic systems involve multiple chaotic systems interacting with each other. These systems can introduce more randomness and complexity, leading to stronger encryption techniques. In this paper, Hyper-chaotic Lorenz system is considered to design robust image encryption/ decryption system based on master-slave synchronization. Firstly, the rich dynamic characteristics of this system is studied using analytical and numerical nonlinear analysis tools. Next, the image secure system has been implemented through Field-Programmable Gate Arrays (FPGAs) Zedboard Zynq xc7z020-1clg484 to verify the image encryption/decryption directly on programmable hardware Kit. Numerical simulations, hardware implementation, and cryptanalysis tools are conducted to validate the effectiveness and robustness of the proposed system.

1 - 2 of 2 items

Search Parameters

Journal Logo
Iraqi Journal for Electrical and Electronic Engineering

College of Engineering, University of Basrah

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

Copyright © 2025 College of Engineering, University of Basrah. All rights reserved, including those for text and data mining, AI training, and similar technologies.