Iraqi Journal for Electrical and Electronic Engineering
Login
Iraqi Journal for Electrical and Electronic Engineering
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
    • Proofreading Service
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
  • About
    • About Journal
    • Aims and Scope
    • Editorial Team
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Abstracting and indexing
    • Announcements
    • Contact

Search Results for long-short-term-memory-lstm-

Article
Mobility Prediction Based on LSTM Multi-Layer Using GPS Phone Data

Nabaa Mhalhal, Suhad Behadili

Pages: 284-292

PDF Full Text
Abstract

Precise Prediction of activity location is an essential element in numerous mobility applications and is especially necessary for the development of tailored sustainable transportation systems. Next-location prediction, which involves predicting a user’s future position based on their past movement patterns, has significant implications in various domains, including urban planning, geo-marketing, disease transmission, Performance wireless network, Recommender Systems, and many other areas. In recent years, various predictors have been suggested to tackle this issue, including state-of-the-art ones that utilize deep learning techniques. This study introduces a robust Model for predicting the future location path of a user based on their known previous locations. The study proposes the use of a Long Short-Term Memory (LSTM) prediction scheme, which is well-suited for learning from sequential data; then a fully connected neuron is employed to decrease the sparsity of the data, resulting in accurate predictions for the path of the user’s next location. The suggested strategy demonstrates superior prediction accuracy compared to a state-of-the-art method, with improvements of up to a loss error of 0.002 based on real-life datasets (Geolife). The results demonstrate that the reliability of forecasts is excellent, indicating the accuracy of the predictions.

1 - 1 of 1 items

Search Parameters

Journal Logo
Iraqi Journal for Electrical and Electronic Engineering

College of Engineering, University of Basrah

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

Copyright © 2025 College of Engineering, University of Basrah. All rights reserved, including those for text and data mining, AI training, and similar technologies.