Iraqi Journal for Electrical and Electronic Engineering
Login
Iraqi Journal for Electrical and Electronic Engineering
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
    • Proofreading Service
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
  • About
    • About Journal
    • Aims and Scope
    • Editorial Team
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Abstracting and indexing
    • Announcements
    • Contact

Search Results for k-nearest-neighbor

Article
A k-Nearest Neighbor Based Algorithm for Human Arm Movements Recognition Using EMG Signals

Mohammed Z. Al-Faiz, MIEEE, Abduladhem A.Ali, Abbas H. Miry

Pages: 158-166

PDF Full Text
Abstract

In a human-robot interface, the prediction of motion, which is based on context information of a task, has the potential to improve the robustness and reliability of motion classification to control human-assisting manipulators. The objective of this work is to achieve better classification with multiple parameters using K-Nearest Neighbor (K-NN) for different movements of a prosthetic arm. The proposed structure is simulated using MATLAB Ver. R2009a, and satisfied results are obtained by comparing with the conventional recognition method using Artificial Neural Network (ANN). Results show the proposed K-NN technique achieved a uniformly good performance with respect to ANN in terms of time, which is important in recognition systems, and better accuracy in recognition when applied to lower Signal-to-Noise Ratio (SNR) signals.

Article
Digital Marketing Data Classification by Using Machine Learning Algorithms

Noor Saud Abd, Oqbah Salim Atiyah, Mohammed Taher Ahmed, Ali Bakhit

Pages: 245-256

PDF Full Text
Abstract

Early in the 20th century, as a result of technological advancements, the importance of digital marketing significantly increased as the necessity for digital customer experience, promotion, and distribution emerged. Since the year 1988, in the case when the term ”Digital Marketing” first appeared, the business sector has undergone drastic growth, moving from small startups to massive corporations on a global scale. The marketer must navigate a chaotic environment caused by the vast volume of generated data. Decision-makers must contend with the fact that user data is dynamic and changes every day. Smart applications must be used within enterprises to better evaluate, classify, enhance, and target audiences. Customers who are tech-savvy are pushing businesses to make bigger financial investments and use cutting-edge technologies. It was only natural that marketing and trade could be one of the areas to move to such development, which helps to move to the speed of spread, advertisements, along with other things to facilitate things for reaching and winning customers. In this study, we utilized machine learning (ML) algorithms (Decision tree (DT), K-Nearest Neighbor (KNN), CatBoost, and Random Forest (RF) (for classifying data in customers to move to development. Improve the ability to forecast customer behavior so one can gain more business from them more quickly and easily. With the use of the aforementioned dataset, the suggested system was put to the test. The results show that the system can accurately predict if a customer will buy something or not; the random forest (RF) had an accuracy of 0.97, DT had an accuracy of 0. 95, KNN had an accuracy of 0. 91, while the CatBoost algorithm had the execution time 15.04 of seconds, and gave the best result of highest f1 score and accuracy (0.91, 0. 98) respectively. Finally, the study’s future goals involve being created a web page, thereby helping many banking institutions with speed and forecast accuracy. Using more techniques of feature selection in conjunction with the marketing dataset to improve diagnosis.

Article
Classification Algorithms for Determining Handwritten Digit

Hayder Naser Khraibet AL-Behadili

Pages: 96-102

PDF Full Text
Abstract

Data-intensive science is a critical science paradigm that interferes with all other sciences. Data mining (DM) is a powerful and useful technology with wide potential users focusing on important meaningful patterns and discovers a new knowledge from a collected dataset. Any predictive task in DM uses some attribute to classify an unknown class. Classification algorithms are a class of prominent mathematical techniques in DM. Constructing a model is the core aspect of such algorithms. However, their performance highly depends on the algorithm behavior upon manipulating data. Focusing on binarazaition as an approach for preprocessing, this paper analysis and evaluates different classification algorithms when construct a model based on accuracy in the classification task. The Mixed National Institute of Standards and Technology (MNIST) handwritten digits dataset provided by Yann LeCun has been used in evaluation. The paper focuses on machine learning approaches for handwritten digits detection. Machine learning establishes classification methods, such as K-Nearest Neighbor(KNN), Decision Tree (DT), and Neural Networks (NN). Results showed that the knowledge-based method, i.e. NN algorithm, is more accurate in determining the digits as it reduces the error rate. The implication of this evaluation is providing essential insights for computer scientists and practitioners for choosing the suitable DM technique that fit with their data.

Article
The Effect of Using Projective Cameras on View- Independent Gait Recognition Performance

Fatimah S. Abdulsattar

Pages: 22-29

PDF Full Text
Abstract

Gait as a biometric can be used to identify subjects at a distance and thus it receives great attention from the research community for security and surveillance applications. One of the challenges that affects gait recognition performance is view variation. Much work has been done to tackle this challenge. However, the majority of the work assumes that gait silhouettes are captured by affine cameras where only the height of silhouettes changes and the difference in viewing angle of silhouettes in one gait cycle is relatively small. In this paper, we analyze the variation in gait recognition performance when using silhouettes from projective cameras and from affine cameras with different distance from the center of a walking path. This is done by using 3D models of walking people in the gallery set and 2D gait silhouettes from independent (single) cameras in the probe set. Different factors that affect matching 3D human models with 2D gait silhouettes from single cameras for view-independent gait recognition are analyzed. In all experiments, we use 258 multi-view sequences belong to 46 subjects from Multi-View Soton gait dataset. We evaluate the matching performance for 12 different views using Gait Energy Image (GEI) as gait features. Then, we analyze the effect of using different camera configurations for 3D model reconstruction, the GEI from cameras with different settings, the upper and lower body parts for recognition and different GEI resolutions. The results illustrate that low recognition performance is achieved when using gait silhouettes from affine cameras while lower recognition performance is obtained when using gait silhouettes from projective cameras.

Article
Multiple Object Detection-Based Machine Learning Techniques

Athraa S. Hasan, Jianjun Yi, Haider M. AlSabbagh, Liwei Chen

Pages: 149-159

PDF Full Text
Abstract

Object detection has become faster and more precise due to improved computer vision systems. Many successful object detections have dramatically improved owing to the introduction of machine learning methods. This study incorporated cutting- edge methods for object detection to obtain high-quality results in a competitive timeframe comparable to human perception. Object-detecting systems often face poor performance issues. Therefore, this study proposed a comprehensive method to resolve the problem faced by the object detection method using six distinct machine learning approaches: stochastic gradient descent, logistic regression, random forest, decision trees, k-nearest neighbor, and naive Bayes. The system was trained using Common Objects in Context (COCO), the most challenging publicly available dataset. Notably, a yearly object detection challenge is held using COCO. The resulting technology is quick and precise, making it ideal for applications requiring an object detection accuracy of 97%.

Article
EEG Motor-Imagery BCI System Based on Maximum Overlap Discrete Wavelet Transform (MODWT) and Machine learning algorithm

Samaa S. Abdulwahab, Hussain K. Khleaf, Manal H. Jassim

Pages: 38-45

PDF Full Text
Abstract

The ability of the human brain to communicate with its environment has become a reality through the use of a Brain-Computer Interface (BCI)-based mechanism. Electroencephalography (EEG) has gained popularity as a non-invasive way of brain connection. Traditionally, the devices were used in clinical settings to detect various brain diseases. However, as technology advances, companies such as Emotiv and NeuroSky are developing low-cost, easily portable EEG-based consumer-grade devices that can be used in various application domains such as gaming, education. This article discusses the parts in which the EEG has been applied and how it has proven beneficial for those with severe motor disorders, rehabilitation, and as a form of communicating with the outside world. This article examines the use of the SVM, k-NN, and decision tree algorithms to classify EEG signals. To minimize the complexity of the data, maximum overlap discrete wavelet transform (MODWT) is used to extract EEG features. The mean inside each window sample is calculated using the Sliding Window Technique. The vector machine (SVM), k-Nearest Neighbor, and optimize decision tree load the feature vectors.

1 - 6 of 6 items

Search Parameters

Journal Logo
Iraqi Journal for Electrical and Electronic Engineering

College of Engineering, University of Basrah

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

Copyright © 2025 College of Engineering, University of Basrah. All rights reserved, including those for text and data mining, AI training, and similar technologies.