Iris pattern is one of the most important biological traits of humans. In last years, the iris pattern is used for human verification because of uniqueness of its texture. In this paper, biometric system based iris recognition is designed and implemented using two comparative approaches. The first approach is the Fourier descriptors, in this method the iris features have been extracted in frequency domain, where the low spectrums define the general description of iris pattern, while the high spectrums describes the fine detail. The second approach, the principle component analysis uses statistic technique to select the most important feature values by reducing its dimensionality. The biometric system is tested by applying one-to-one pattern matching procedure for 50 persons. The distance measurement method is applied for Manhattan, Euclidean, and Cosine classifiers for purpose of comparison. In all three classification methods, Fourier descriptors were always advanced principle component analysis in matching results. It satisfied 96%, 94%, and 86% correct matching against 94%, 92%, and 80% for principle component analysis using Manhattan, Euclidean, and Cosine classifiers respectively.
For many uses, biometric systems have gained considerable attention. Iris identification was One of the most powerful sophisticated biometrical techniques for effective and confident authentication. The current iris identification system offers accurate and reliable results based on near-infrared light (NIR) images when images are taken in a restricted area with fixed- distance user cooperation. However, for the color eye images obtained under visible wavelength (VW) without collaboration among the users, the efficiency of iris recognition degrades because of noise such as eye blurring images, eye lashing, occlusion, and reflection. This work aims to use the Gray-Level Co-occurrence Matrix (GLCM) to retrieve the iris's characteristics in both NIR iris images and visible spectrum. GLCM is second-order Statistical-Based Methods for Texture Analysis. The GLCM- based extraction technology was applied after the preprocessing method to extract the pure iris region's characteristics. The Energy, Entropy, Correlation, Homogeneity, and Contrast collection of second-order statistical features are determined from the generated co-occurrence matrix, Stored as a vector for numerical features. This approach is used and evaluated on the CASIA v1and ITTD v1 databases as NIR iris image and UBIRIS v1 as a color image. The results showed a high accuracy rate (99.2 %) on CASIA v1, (99.4) on ITTD v1, and (87%) on UBIRIS v1 evaluated by comparing to the other methods.
The evolution of wireless communication technology increases human machine interaction capabilities especially in controlling robotic systems. This paper introduces an effective wireless system in controlling the directions of a wheeled robot based on online hand gestures. The hand gesture images are captured and processed to be recognized and classified using neural network (NN). The NN is trained using extracted features to distinguish five different gestures; accordingly it produces five different signals. These signals are transmitted to control the directions of the cited robot. The main contribution of this paper is, the technique used to recognize hand gestures is required only two features, these features can be extracted in very short time using quite easy methodology, and this makes the proposed technique so suitable for online interaction. In this methodology, the preprocessed image is partitioned column-wise into two half segments; from each half one feature is extracted. This feature represents the ratio of white to black pixels of the segment histogram. The NN showed very high accuracy in recognizing all of the proposed gesture classes. The NN output signals are transmitted to the robot microcontroller wirelessly using Bluetooth. Accordingly the microcontroller guides the robot to the desired direction. The overall system showed high performance in controlling the robot movement directions.